需要结合下面这几篇文章看,下面是自己学习的记录。
https://blog.csdn.net/u011564172/article/details/62043236
https://blog.csdn.net/u011564172/article/details/60875013
https://blog.csdn.net/u011564172/article/details/60143168
https://blog.csdn.net/u011564172/article/details/59113617
Master Main 方法中,调用 RpcEnv 的 create 方法,返回 NettyRpcEnv 实例,NettyRpcEnv 继承自 RpcEnv,create 方法最终启动了 Netty 服务(具体请参考 Spark RPC之Netty启动),流程入下图:
RpcEnv create 方法 返回的 NettyRpcEnv 实例,随后调用了 setupEndpoint 方法:
val rpcEnv = RpcEnv.create(SYSTEM_NAME, host, port, conf, securityMgr)
val masterEndpoint = rpcEnv.setupEndpoint(ENDPOINT_NAME,
new Master(rpcEnv, rpcEnv.address, webUiPort, securityMgr, conf))
其实是调用了 Dispatcher 的 registerRpcEndpoint 方法:
//NettyRpcEnv.scala 中的代码
override def setupEndpoint(name: String, endpoint: RpcEndpoint): RpcEndpointRef = {
dispatcher.registerRpcEndpoint(name, endpoint)
}
在 NettyRpcEnv.scala 中创建了 TransportContext:
private val transportContext = new TransportContext(transportConf,
new NettyRpcHandler(dispatcher, this, streamManager))
TransportContext 构造函数中创建了 NettyRpcHandler,NettyRpcHandler 继承自 RpcHandler,看下 NettyRpcHandler 类的部分代码:
private[netty] class NettyRpcHandler(
dispatcher: Dispatcher,
nettyEnv: NettyRpcEnv,
streamManager: StreamManager) extends RpcHandler with Logging {
override def receive(
client: TransportClient,
message: ByteBuffer,
callback: RpcResponseCallback): Unit = {
val messageToDispatch = internalReceive(client, message)
dispatcher.postRemoteMessage(messageToDispatch, callback)
}
override def receive(
client: TransportClient,
message: ByteBuffer): Unit = {
val messageToDispatch = internalReceive(client, message)
dispatcher.postOneWayMessage(messageToDispatch)
}
}
可以看到 有两个 重写的 receive 方法,我们知道 receive 方法用来接收 远端发来的 RPC消息,最终调用了 Dispatcher 的 postMessage 方法。
那 receive 最终由哪里调用呢?其实最终是从 TransportRequestHandler 的 rpcHandler 调用的。
TransportRequestHandler 类 的 rpcHandler 成员,持有了 NettyRpcHandler 的引用。我们看下 NettyRpcHandler 如何一步步把自己传给 TransportRequestHandler 的 rpcHandle 的:
TransportContext 的 rpcHandler 成员持有了 NettyRpcHandler 的引用:
public TransportContext(TransportConf conf, RpcHandler rpcHandler) {
this(conf, rpcHandler, false);
}
public TransportContext(...RpcHandler rpcHandler) {
...
this.rpcHandler = rpcHandler;
}
TransportContext 把 rpcHandler 传给了 TransportServer:
public TransportServer createServer(int port, List<TransportServerBootstrap> bootstraps) {
return new TransportServer(this, null, port, rpcHandler, bootstraps);
}
TransportServer 的成员 appRpcHandler 持有了 NettyRpcHandler 的引用:
public TransportServer(...RpcHandler appRpcHandler) {
...
this.appRpcHandler = appRpcHandler;
}
在 TransportServer 的 init 方法中,把 appRpcHandler 传给了 TransportContext 的initializePipeline 方法:
private void init(String hostToBind, int portToBind) {
...
context.initializePipeline(ch, rpcHandler);
}
我们看下 TransportContext 的initializePipeline 方法:
public TransportChannelHandler initializePipeline(SocketChannel channel, RpcHandler channelRpcHandler) {
...
TransportChannelHandler channelHandler = createChannelHandler(channel, channelRpcHandler);
//下面把 TransportChannelHandler 添加到 pipeline 中。
channel.pipeline()
.addLast("encoder", ENCODER)
.addLast(TransportFrameDecoder.HANDLER_NAME, NettyUtils.createFrameDecoder())
.addLast("decoder", DECODER)
.addLast("idleStateHandler", new IdleStateHandler(0, 0, conf.connectionTimeoutMs() / 1000))
// NOTE: Chunks are currently guaranteed to be returned in the order of request, but this
// would require more logic to guarantee if this were not part of the same event loop.
.addLast("handler", channelHandler);
return channelHandler;
}
initializePipeline 方法创建了 TransportChannelHandler,并返回。
看下 createChannelHandler 方法:
private TransportChannelHandler createChannelHandler(...RpcHandler rpcHandler) {
TransportRequestHandler requestHandler = new TransportRequestHandler(channel, client,
rpcHandler);
return new TransportChannelHandler(client, responseHandler, requestHandler,
conf.connectionTimeoutMs(), closeIdleConnections);
}
最终 TransportRequestHandler 的成员 rpcHandler 持有了 NettyRpcHandler 的引用。
我们 看下 TransportRequestHandler 中 使用 rpcHandler 的地方:
private void processRpcRequest(final RpcRequest req) {
rpcHandler.receive(reverseClient, req.body().nioByteBuffer(), new RpcResponseCallback() {
@Override
public void onSuccess(ByteBuffer response) {
respond(new RpcResponse(req.requestId, new NioManagedBuffer(response)));
}
});
}
private void processOneWayMessage(OneWayMessage req) {
rpcHandler.receive(reverseClient, req.body().nioByteBuffer());
}
NettyRpcHandler 重写的 receive 方法,最终在这里被回调的:rpcHandler.receive。
上面两个方法在这里调用:
@Override
public void handle(RequestMessage request) {
if (request instanceof ChunkFetchRequest) {
processFetchRequest((ChunkFetchRequest) request);
} else if (request instanceof RpcRequest) {
processRpcRequest((RpcRequest) request);
} else if (request instanceof OneWayMessage) {
processOneWayMessage((OneWayMessage) request);
} else if (request instanceof StreamRequest) {
processStreamRequest((StreamRequest) request);
} else {
throw new IllegalArgumentException("Unknown request type: " + request);
}
}
handle 方法对 RequestMessage 做了区分,验证了我们上面提到的。
在 TransportChannelHandler.java 中调用了 handle 方法:
@Override
public void channelRead(ChannelHandlerContext ctx, Object request) throws Exception {
if (request instanceof RequestMessage) {
requestHandler.handle((RequestMessage) request);
} else if (request instanceof ResponseMessage) {
responseHandler.handle((ResponseMessage) request);
} else {
ctx.fireChannelRead(request);
}
}
而 channelRead 中的消息是 client 通过 RPC 发过来的。
处理client 的 RpcRequest 请求
RpcEndpointRef和RpcEndpoint不在一台机器
上图的过程3,简化了流程,这个简化的流程就是我们上面分析的。
不在同一台机器时,需要借助于netty,大致步骤如下
- 如Spark RPC之Netty启动 所述,创建RpcEnv时启动netty server,同时将TransportChannelHandler添加到pipeline中
- 如上图,TransportChannelHandler处理netty接收到的数据,依次交给TransportRequestHandler、NettyRpcHandler处理。
- 最后交由Dispatcher、Inbox,请参考Spark RPC之Dispatcher、Inbox、Outbox 。看下 Dispatcher 流程图:
RpcEndpointRef和RpcEndpoint在一台机器
在同一台机器时,不需要netty,直接访问RpcEndpoint,如上图,依然交给Dispatcher、Inbox处理。