TensorFlow充分理解 name / variable_scope

@author: huangyongye
@creat_date: 2017-04-26
[转载]https://blog.csdn.net/jerr__y/article/details/70809528
后面的例子有问题
前言: 本例子主要介绍 name_scope 和 variable_scope 的正确使用方式,学习并理解本例之后,你就能够真正读懂 TensorFlow 的很多代码并能够清晰地理解模型结构了。
之前写过一个例子了: TensorFlow入门(四) name / variable_scope 的使用 但是当时其实还对 name / variable_scope 不是非常理解。所以又学习了一番,攒了这篇博客。学习本例子不需要看上一篇,但是咱们还是从上一篇说起:

** 起因:在运行 RNN LSTM 实例代码的时候出现 ValueError。 **
在 TensorFlow 中,经常会看到这 name_scope 和 variable_scope 两个东东出现,这到底是什么鬼,到底系做咩噶!!! 在做 LSTM 的时候遇到了下面的错误:

ValueError: Variable rnn/basic_lstm_cell/weights already exists, disallowed.

然后谷歌百度都查了一遍,结果也不知是咋回事。我是在 jupyter notebook 运行的示例程序,第一次运行的时候没错,然后就总是出现上面的错误。后来才知道是 get_variable() 和 variable_scope() 搞的鬼。

=========================================================

1. 先说结论

要理解 name_scope 和 variable_scope, 首先必须明确二者的使用目的。我们都知道,和普通模型相比,神经网络的节点非常多,节点节点之间的连接(权值矩阵)也非常多。所以我们费尽心思,准备搭建一个网络,然后有了图1的网络,WTF! 因为变量太多,我们构造完网络之后,一看,什么鬼,这个变量到底是哪层的??


图1 引入命名空间之前

引入命名空间之后

为了解决这个问题,我们引入了 name_scope 和 variable_scope, 二者又分别承担着不同的责任:

  • ** name_scope: ** 为了更好地管理变量的命名空间而提出的。比如在 tensorboard 中,因为引入了 name_scope, 我们的 Graph 看起来才井然有序。
  • ** variable_scope: ** 大大大部分情况下,跟 tf.get_variable() 配合使用,实现变量共享的功能。

下面通过两组实验来探索 TensorFlow 的命名机制。

2. (实验一)三种方式创建变量: tf.placeholder, tf.Variable, tf.get_variable

2.1 实验目的:探索三种方式定义的变量之间的区别

import tensorflow as tf
# 设置GPU按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

1.placeholder

# 1.placeholder 
v1 = tf.placeholder(tf.float32, shape=[2,3,4])
print v1.name
v1 = tf.placeholder(tf.float32, shape=[2,3,4], name='ph')
print v1.name
v1 = tf.placeholder(tf.float32, shape=[2,3,4], name='ph')
print v1.name
print type(v1)
print v1
Placeholder:0
ph:0
ph_1:0
<class 'tensorflow.python.framework.ops.Tensor'>
Tensor("ph_1:0", shape=(2, 3, 4), dtype=float32)

2. tf.Variable()

# 2. tf.Variable()
v2 = tf.Variable([1,2], dtype=tf.float32)
print v2.name
v2 = tf.Variable([1,2], dtype=tf.float32, name='V')
print v2.name
v2 = tf.Variable([1,2], dtype=tf.float32, name='V')
print v2.name
print type(v2)
print v2
Variable:0
V:0
V_1:0
<class 'tensorflow.python.ops.variables.Variable'>
Tensor("V_1/read:0", shape=(2,), dtype=float32)
tf.get_variable() 创建变量的时候必须要提供 name
# 3.tf.get_variable() 创建变量的时候必须要提供 name
v3 = tf.get_variable(name='gv', shape=[])  
print v3.name
v4 = tf.get_variable(name='gv', shape=[2])
print v4.name
gv:0
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-7-29efaac2d76c> in <module>()
      2 v3 = tf.get_variable(name='gv', shape=[])
      3 print v3.name
----> 4 v4 = tf.get_variable(name='gv', shape=[2])
      5 print v4.name
此处还有一堆错误信息。。。
ValueError: Variable gv already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
...
print type(v3)
print v3
<class 'tensorflow.python.ops.variables.Variable'>
Tensor("gv/read:0", shape=(), dtype=float32)

还记得有这么个函数吗? tf.trainable_variables(), 它能够将我们定义的所有的 trainable=True 的所有变量以一个list的形式返回。 very good, 现在要派上用场了。

vs = tf.trainable_variables()
print len(vs)
for v in vs:
    print v
4
Tensor("Variable/read:0", shape=(2,), dtype=float32)
Tensor("V/read:0", shape=(2,), dtype=float32)
Tensor("V_1/read:0", shape=(2,), dtype=float32)
Tensor("gv/read:0", shape=(), dtype=float32)

2.2 实验1结论

从上面的实验结果来看,这三种方式所定义的变量具有相同的类型。而且只有 tf.get_variable() 创建的变量之间会发生命名冲突。在实际使用中,三种创建变量方式的用途也是分工非常明确的。其中

tf.placeholder() 占位符。* trainable==False *
tf.Variable() 一般变量用这种方式定义。 * 可以选择 trainable 类型 *
tf.get_variable() 一般都是和 tf.variable_scope() 配合使用,从而实现变量共享的功能。 * 可以选择 trainable 类型 *

3. (实验二) 探索 name_scope 和 variable_scope

3.1 实验二目的:熟悉两种命名空间的应用情景。

import tensorflow as tf
# 设置GPU按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
with tf.name_scope('nsc1'):
    v1 = tf.Variable([1], name='v1')
    with tf.variable_scope('vsc1'):
        v2 = tf.Variable([1], name='v2')
        v3 = tf.get_variable(name='v3', shape=[])
print 'v1.name: ', v1.name
print 'v2.name: ', v2.name
print 'v3.name: ', v3.name
v1.name:  nsc1/v1:0
v2.name:  nsc1/vsc1/v2:0
v3.name:  vsc1/v3:0
with tf.name_scope('nsc1'):
    v4 = tf.Variable([1], name='v4')
print 'v4.name: ', v4.name`
v4.name:  nsc1_1/v4:0

tf.name_scope() 并不会对 tf.get_variable() 创建的变量有任何影响。
tf.name_scope() 主要是用来管理命名空间的,这样子让我们的整个模型更加有条理。而 tf.variable_scope() 的作用是为了实现变量共享,它和 tf.get_variable() 来完成变量共享的功能。

1.第一组,用 tf.Variable() 的方式来定义。

import tensorflow as tf
# 设置GPU按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# 拿官方的例子改动一下
def my_image_filter():
    conv1_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),
        name="conv1_weights")
    conv1_biases = tf.Variable(tf.zeros([32]), name="conv1_biases")
    conv2_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),
        name="conv2_weights")
    conv2_biases = tf.Variable(tf.zeros([32]), name="conv2_biases")
    return None

# First call creates one set of 4 variables.
result1 = my_image_filter()
# Another set of 4 variables is created in the second call.
result2 = my_image_filter()
# 获取所有的可训练变量
vs = tf.trainable_variables()
print 'There are %d train_able_variables in the Graph: ' % len(vs)
for v in vs:
    print v
There are 8 train_able_variables in the Graph: 
Tensor("conv1_weights/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("conv1_biases/read:0", shape=(32,), dtype=float32)
Tensor("conv2_weights/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("conv2_biases/read:0", shape=(32,), dtype=float32)
Tensor("conv1_weights_1/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("conv1_biases_1/read:0", shape=(32,), dtype=float32)
Tensor("conv2_weights_1/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("conv2_biases_1/read:0", shape=(32,), dtype=float32)

2.第二种方式,用 tf.get_variable() 的方式

import tensorflow as tf
# 设置GPU按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)

# 下面是定义一个卷积层的通用方式
#在下面的代码中,通过tf.get_variable()创建了名称分别为weights和biases的两个变量。
def conv_relu(kernel_shape, bias_shape):
    # Create variable named "weights".
    weights = tf.get_variable("weights", kernel_shape, initializer=tf.random_normal_initializer())
    # Create variable named "biases".
    biases = tf.get_variable("biases", bias_shape, initializer=tf.constant_initializer(0.0))
    return None
#但是我们需要两个卷积层,这时可以通过tf.variable_scope()指定作用域进行区分
#如with tf.variable_scope("conv1")这行代码指定了第一个卷积层作用域为conv1
#在这个作用域下有两个变量weights和biases。

def my_image_filter():
    # 按照下面的方式定义卷积层,非常直观,而且富有层次感
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu([5, 5, 32, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu( [5, 5, 32, 32], [32])

# 最后在image_filters这个作用域重复使用第一张图片输入时创建的变量,
# 调用函数reuse_variables(),代码如下:
with tf.variable_scope("image_filters") as scope:
    # 下面我们两次调用 my_image_filter 函数,但是由于引入了 变量共享机制
    # 可以看到我们只是创建了一遍网络结构。
    result1 = my_image_filter()
    scope.reuse_variables()
    result2 = my_image_filter()


# 看看下面,完美地实现了变量共享!!!
vs = tf.trainable_variables()
print 'There are %d train_able_variables in the Graph: ' % len(vs)
for v in vs:
    print v
There are 4 train_able_variables in the Graph: 
Tensor("image_filters/conv1/weights/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("image_filters/conv1/biases/read:0", shape=(32,), dtype=float32)
Tensor("image_filters/conv2/weights/read:0", shape=(5, 5, 32, 32), dtype=float32)
Tensor("image_filters/conv2/biases/read:0", shape=(32,), dtype=float32)

3.2 实验 2 结论

首先我们要确立一种 Graph 的思想。在 TensorFlow 中,我们定义一个变量,相当于往 Graph 中添加了一个节点。和普通的 python 函数不一样,在一般的函数中,我们对输入进行处理,然后返回一个结果,而函数里边定义的一些局部变量我们就不管了。但是在 TensorFlow 中,我们在函数里边创建了一个变量,就是往 Graph 中添加了一个节点。出了这个函数后,这个节点还是存在于 Graph 中的。

4. 优雅示例

在深度学习中,通常说到 变量共享 我们都会想到 RNN 。下面我找了两个源码中非常漂亮的例子,可以参考学习学习。

# 例1:MultiRNNCell(RNNCell) 中这样来创建 各层 Cell
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py
for i, cell in enumerate(self._cells):
    with vs.variable_scope("cell_%d" % i):
        if self._state_is_tuple:
            ...
# 例2:tf.contrib.rnn.static_bidirectional_rnn 双端 LSTM 
with vs.variable_scope(scope or "bidirectional_rnn"):
    # Forward direction
    with vs.variable_scope("fw") as fw_scope:
        output_fw, output_state_fw = static_rnn(
        cell_fw, inputs, initial_state_fw, dtype,
        sequence_length, scope=fw_scope)

    # Backward direction
    with vs.variable_scope("bw") as bw_scope:
        reversed_inputs = _reverse_seq(inputs, sequence_length)
        tmp, output_state_bw = static_rnn(
              cell_bw, reversed_inputs, initial_state_bw,
              dtype, sequence_length, scope=bw_scope)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容

  • 简单线性回归 import tensorflow as tf import numpy # 创造数据 x_dat...
    CAICAI0阅读 3,544评论 0 49
  • 想要看你有多爱❤自己,只要看你每顿给自己吃的饭就行了。 自爱,从你的早饭开始。 为自己做一顿心仪的早餐,开启一天的...
    大盛Feeling阅读 337评论 0 2
  • (离开你以后,我喜欢上了一个和你一样爱笑的人……) 我喜欢你❤我喜欢你。也许我从来没有告诉过你,我喜欢你。上课趴在...
    慌乱心弦阅读 118评论 0 0
  • 青史成书墨成文, 英雄白骨殁王臣。 功成身退归故里, 西湖邈邈独伊人。
    莞尔_阅读 251评论 0 1