探索 Go 语言中的内存对齐:为什么结构体大小会有所不同?

在 Go 语言中,内存对齐是一个经常被忽略但非常重要的概念。理解内存对齐不仅可以帮助我们写出更高效的代码,还能避免一些潜在的性能陷阱。

在这篇文章中,我们将通过一个简单的例子来探讨 Go 语言中的内存对齐机制,以及为什么相似的结构体在内存中会占用不同的大小。

示例代码

我们先来看一段代码:

package memory_alignment

import (
    "fmt"
    "unsafe"
)

type A struct {
    a int8
    b int8
    c int32
    d string
    e string
}

type B struct {
    a int8
    e string
    c int32
    b int8
    d string
}

func Run() {
    var a A
    var b B
    fmt.Printf("a size: %v \n", unsafe.Sizeof(a))
    fmt.Printf("b size: %v \n", unsafe.Sizeof(b))
    // a size: 40
    // b size: 48
}

在这个例子中,我们定义了两个结构体 AB。它们的字段基本相同,只是排列顺序不同。然后,我们使用 unsafe.Sizeof 来查看这两个结构体在内存中的大小。

结果却令人惊讶:结构体 A 的大小是 40 字节,而结构体 B 的大小是 48 字节。为什么会出现这样的差异呢?这就是我们今天要讨论的内存对齐的作用。

内存对齐概念

内存对齐是指编译器为了优化内存访问速度,而对数据在内存中的位置进行调整的一种策略。不同类型的数据在内存中的对齐要求不同,例如:

  • int8 类型的变量通常对齐到 1 字节边界。
  • int32 类型的变量通常对齐到 4 字节边界。
  • 指针(如 string)通常对齐到 8 字节边界。

为了满足这些对齐要求,编译器可能会在结构体的字段之间插入一些“填充”字节,从而确保每个字段都能正确对齐。

结构体内存布局解析

让我们深入分析一下 AB 两个结构体的内存布局,看看编译器是如何为它们分配内存的。

结构体 A 的内存布局

| a (int8) | b (int8) | padding (2 bytes) | c (int32) | d (string, 8 bytes) | e (string, 8 bytes) |
  • abint8 类型,各占 1 字节。
  • cint32 类型,需要 4 字节对齐,b 后面会有 2 个填充字节。
  • destring 类型,各占 8 字节。

总大小为:1 + 1 + 2 + 4 + 8 + 8 = 24 字节。

结构体 B 的内存布局

| a (int8) | padding (7 bytes) | e (string, 8 bytes) | c (int32) | padding (4 bytes) | b (int8) | padding (3 bytes) | d (string, 8 bytes) |
  • aint8 类型,占 1 字节,后面有 7 个填充字节,以便 e 能够对齐到 8 字节边界。
  • cint32 类型,需要 4 字节对齐,因此在 c 后面没有填充。
  • bint8 类型,需要填充 3 个字节来对齐到 d 的 8 字节边界。

总大小为:1 + 7 + 8 + 4 + 4 + 1 + 3 + 8 = 36 字节。

请注意,Go 编译器可能会将 de 视为 8 字节对齐类型(取决于系统和编译器的实现),因此总大小可能是 48 字节。

如何优化结构体内存布局

为了减少结构体的内存占用,我们可以按照字段的对齐要求来重新排列字段。例如:

  • 先声明大的字段(如 stringint32),然后是小的字段(如 int8),可以减少内存中的填充字节。

我们可以将 B 结构体改成以下形式:

type OptimizedB struct {
    e string
    d string
    c int32
    a int8
    b int8
}

这样可以减少内存填充,从而优化内存占用。

总结

内存对齐是编译器优化内存访问速度的一个重要策略。虽然它对大多数应用程序的影响可能较小,但在高性能场景或内存受限的环境中,理解并优化内存对齐可能会带来显著的性能提升。

在 Go 语言中,了解结构体的内存对齐规则,合理排列结构体字段顺序,不仅可以提高程序的性能,还能减少内存的浪费。这是一种简单而有效的优化手段,希望大家在以后的编程实践中能够灵活运用。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容