kafka+storm+redis简单demo

环境准备(linux虚拟机一台)
1 、java环境(1.7)
2 、 python环境(2.7)
3 、zookeeper环境(3.4.5)
4 、 kafka环境(2.9.2)
5 、 storm环境(0.9.2)
6 、redis

启动环境(这里使用单节点)

2017-04-26_165356.png

【程序逻辑】
kafka模拟随机数据实时发送到“ARF”主题,storm的数据源spout作为kafka的消费者去消费接收到的数据,对数据简单处理后持久化到redis中

【代码】
pom.xml
(pom文件这里要注意的是pom文件中的storm版本要与linux服务器上安装的storm版本一致,包括storm_kafka的整合jar也要一致)

<dependencies>
    <!-- junit -->
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.10</version>
        <scope>test</scope>
    </dependency>
     
    <!-- storm -->
    <dependency>
        <groupId>org.apache.storm</groupId>
        <artifactId>storm-core</artifactId>
        <version>0.9.2</version>
    </dependency>
       <dependency>
           <groupId>org.apache.storm</groupId>
           <artifactId>storm-kafka</artifactId>
           <version>0.9.2</version>
           <exclusions>
               <exclusion>
                   <groupId>org.slf4j</groupId>
                   <artifactId>slf4j-log4j12</artifactId>
               </exclusion>
               <exclusion>
                   <groupId>org.slf4j</groupId>
                   <artifactId>slf4j-api</artifactId>
               </exclusion>
           </exclusions>
       </dependency>
    <dependency>
        <groupId>commons-collections</groupId>
        <artifactId>commons-collections</artifactId>
    </dependency>
    
    <!-- kafka -->
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka_2.11</artifactId>
        <version>0.9.0.0</version>
        <exclusions>
            <exclusion>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
            </exclusion>
            <exclusion>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
            </exclusion>
            <exclusion>
                <artifactId>jmxtools</artifactId>
                <groupId>com.sun.jdmk</groupId>
            </exclusion>
            <exclusion>
                <artifactId>jmxri</artifactId>
                <groupId>com.sun.jmx</groupId>
            </exclusion>
            <exclusion>
                <artifactId>jms</artifactId>
                <groupId>javax.jms</groupId>
            </exclusion>
            <exclusion>
                <groupId>org.apache.zookeeper</groupId>
                <artifactId>zookeeper</artifactId>
            </exclusion>
        </exclusions>   
    </dependency>
    <!--redis-->
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
        <version>2.8.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.commons</groupId>
        <artifactId>commons-pool2</artifactId>
        <version>2.4.2</version>
    </dependency>
</dependencies>

kafka生产者
(kafka随机获取静态map中的某个单词数据发送给主题ARF)

/**
 * kafka生产者类
 * @author lvfang
 *
 */
public class KafkaProduce extends Thread {

    // 主题
    private String topic;
    // 数据源容器
    private static final Map<Integer, String> map = new HashMap<Integer, String>();
    final Random random = new Random();

    static {
        map.put(0, "java");
        map.put(1, "php");
        map.put(2, "groovy");
        map.put(3, "python");
        map.put(4, "ruby");
    }
    
    public KafkaProduce(String topic){  
        super();  
        this.topic = topic;  
    } 
    
    //创建生产者
    private Producer createProducer(){
        Properties properties = new Properties();
        //zookeeper单节点
        properties.put("zookeeper.connect","192.168.1.201:2181");
        //kafka单节点
        properties.put("metadata.broker.list", "192.168.1.201:9092");
        properties.put("serializer.class", StringEncoder.class.getName());  
        return new Producer<Integer, String>(new ProducerConfig(properties)); 
    }
    
    @Override
    public void run() {
        //创建生产者
        Producer producer = createProducer();    
        //循环发送消息到kafka
        while(true){  
            producer.send(new KeyedMessage<Integer, String>(topic, map.get(random.nextInt(5))));  
            try {  
                //发送消息的时间间隔
                Thread.sleep(200);
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
        }  
    }
    
    
    public static void main(String[] args) {
        // 使用kafka集群中创建好的主题 test  
         new KafkaProduce("ARF").start(); 
    }
}

kafka消费者
(kafka消费者从主题ARF中实时获取数据)

/**
 * kafka消费者类
 * @author lvfang
 *
 */
public class KafkaCusumer extends Thread {

    private String topic;//主题
    
    private long i;
    
    public KafkaCusumer(String topic){  
        super();  
        this.topic = topic;  
    } 
    
    //创建消费者
    private ConsumerConnector createConsumer(){
        Properties properties = new Properties();
        //zkInfo
        properties.put("zookeeper.connect","192.168.1.201:2181");
        //必须要使用别的组名称, 如果生产者和消费者都在同一组,则不能访问同一组内的topic数据  
        properties.put("group.id", "group1");
        return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
    }
    
    @Override
    public void run() {
        //创建消费者
        ConsumerConnector consumer = createConsumer();  
        //主题数map
        Map<String, Integer> topicCountMap = new HashMap<>();
        // 一次从topic主题中获取一个数据 
        topicCountMap.put(topic, 1);
        //创建一个获取消息的消息流
        Map<String,List<KafkaStream<byte[], byte[]>>> messageStreams = consumer.createMessageStreams(topicCountMap);
        // 获取每次接收topic主题到的这个数据  
        KafkaStream<byte[], byte[]> stream = messageStreams.get(topic).get(0);
        ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
        
        try {
            //循环打印
            while (iterator.hasNext()) {
                String message = new String(iterator.next().message());     
                i++;
                System.out.println("接收到  " + i + " 条消息: "+ message);  
            }
        } catch (Exception e) {} 
    }
    
    public static void main(String[] args) {
        // 使用kafka集群中创建好的主题 test 
        new KafkaCusumer("ARF").start();  
    }
}

先将以上生产消费调通

2017-04-26_171718.png
2017-04-26_171731.png

调通kafka生产消费后就可以整合storm了,这里要注意各个数据的流向

kafka生产消费模式:kafka生产者    ------>    kafka消费者
storm数据流模式: spout   --->  bolt1  ----> bolt2 ... ...
kafka整合storm模式:kafka生产者    ------>   kafkaSpout(kafka的消费者就是storm的数据源)

kafkaSpout

/**
 * kafka整合storm作为storm数据源spout
 * @author lvfang
 *
 */
public class KafkaSpoutMain {
    // 主题与zk端口
    public static final String TOPIC = "ARF";
    public static final String ZKINFO = "192.168.1.201:2181";

    public static void main(String[] args) {
        TopologyBuilder topologyBuilder = new TopologyBuilder();
        //创建zk主机
        ZkHosts zkHosts = new ZkHosts(ZKINFO);
        //创建spout
        SpoutConfig spoutConfig = new SpoutConfig(zkHosts, TOPIC, "","KafkaSpout");
        //整合kafkaSpout
        KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

        // 设置storm数据源为kafka整合storm的kafkaSpout
        topologyBuilder.setSpout("KafkaSpout", kafkaSpout, 1);
        //数据流向,流向dataBolt进行处理
        topologyBuilder.setBolt("dataBolt", new DataBolt(), 1).shuffleGrouping("KafkaSpout");

        Config config = new Config();
        config.setNumWorkers(1);

        if (args.length > 0) {
            try {
                StormSubmitter.submitTopology(args[0], config,topologyBuilder.createTopology());
            } catch (Exception e) {
            }
        } else {
            LocalCluster localCluster = new LocalCluster();
            localCluster.submitTopology("getData", config,topologyBuilder.createTopology());
        }
    }
}

bolt(storm处理数据组件,这里直接将数据存储redis)

/**
 * 解析数据持久化
 * @author lvfang
 *
 */
public class DataBolt extends BaseRichBolt {
    
    public int i = 0;
    public static Jedis jedis;
    public Map<String,String> map = new HashMap<String,String>();
    //jedis,生产环境最好用JedisPool
    static {
        jedis = new Jedis("192.168.1.201",6379);
        jedis.auth("cjqc123456");
    }

    public void execute(Tuple tuple) {
        String string = new String((byte[]) tuple.getValue(0));

        i++;
        String[] datas = string.split(" ");

        System.out.println("【收到消息:" + i + " 条数据】" + string);
        
        map.put("a", UUID.randomUUID()+ "_" + string);
        map.put("b", UUID.randomUUID()+ "_" + string);
        map.put("c", UUID.randomUUID()+ "_" + string);
        map.put("d", UUID.randomUUID()+ "_" + string);

        jedis.hmset("test", map);
    }

    public void prepare(Map map, TopologyContext topologyContext, OutputCollector outputCollector) {
        // 初始化  
    }

    public void declareOutputFields(OutputFieldsDeclarer arg0) {
        
    }
}

启动kafkaSpoutMain获取kafka的数据,并查看redis中是否有数据

2017-04-26_174349.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,637评论 18 139
  • kafka的定义:是一个分布式消息系统,由LinkedIn使用Scala编写,用作LinkedIn的活动流(Act...
    时待吾阅读 5,311评论 1 15
  • 本文转载自http://dataunion.org/?p=9307 背景介绍Kafka简介Kafka是一种分布式的...
    Bottle丶Fish阅读 5,467评论 0 34
  • 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下: 以时间复杂度为O...
    高广超阅读 12,827评论 8 167
  • Kafka官网:http://kafka.apache.org/入门1.1 介绍Kafka™ 是一个分布式流处理系...
    it_zzy阅读 3,887评论 3 53