Assignment 3 - Image Sentiment Classification

CNN Code

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import csv
import math
import numpy as np

# 读取 train.csv
# 划分 70% 为 train set, 30% 为 test set
def loaddata():
    train_x = []
    train_y = []

    n_row = 0
    path = r'E:\李宏毅\机器学习\keras\train.csv'
    text = open(path, 'r')
    row = csv.reader(text)
    for r in row:
        temp = []
        if n_row != 0:   # 第一行(索引 0),是列标签,不用读取
            train_y.append(r[0])
            temp = [float(b) for b in r[1].split(' ')]
            train_x.append(temp)
        n_row = n_row + 1

    train_x = np.array(train_x)
    train_y = np.array(train_y)

    len = math.floor(train_x.shape[0]*0.7)
    x_train = train_x[0:len]
    y_train = train_y[0:len]
    x_test = train_x[len:]
    y_test = train_y[len:]

    x_train = x_train.reshape(x_train.shape[0], 48, 48, 1)
    x_test = x_test.reshape(x_test.shape[0], 48, 48, 1)

    # print(x_train.shape) # (20096, 48, 48, 1)
    # print(y_train.shape) # (20096,)
    # print(x_test.shape) # (8613, 48, 48, 1)
    # print(y_test.shape) # (8613,)

    return (x_train, y_train), (x_test, y_test)


def Model():

    batch_size = 128
    num_classes = 7
    epochs = 10

    img_rows, img_cols = 48, 48
    input_shape = (img_rows, img_cols, 1)

    (x_train, y_train), (x_test, y_test) = loaddata()

    # 归一化
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    model = Sequential()
    model.add(Conv2D(64, (3, 3), activation = 'relu', input_shape = input_shape))
    model.add(MaxPooling2D(pool_size = (3, 3)))

    model.add(Conv2D(128, (3, 3), activation = 'relu'))
    model.add(MaxPooling2D(pool_size = (3, 3)))

    model.add(Flatten())
    model.add(Dense(256, activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(256, activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(num_classes, activation = 'softmax'))

    model.compile(loss = 'categorical_crossentropy', optimizer = 'adadelta', metrics = ['accuracy'])
    model.fit(x_train, y_train, batch_size = batch_size, epochs = epochs,verbose = 1, validation_data = (x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose = 0)

    print('Test Loss: ', score[0])
    print('Test accuracy: ', score[1])

if __name__ == '__main__':
    Model()

Test Loss: 1.21152299923
Test accuracy: 0.53860443516

DNN Code

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import csv
import math
import numpy as np

# 读取 train.csv
# 划分 70% 为 train set, 30% 为 test set
def loaddata():
    train_x = []
    train_y = []

    n_row = 0
    path = r'E:\李宏毅\机器学习\keras\train.csv'
    text = open(path, 'r')
    row = csv.reader(text)
    for r in row:
        temp = []
        if n_row != 0:   # 第一行(索引 0),是列标签,不用读取
            train_y.append(r[0])
            temp = [float(b) for b in r[1].split(' ')]
            train_x.append(temp)
        n_row = n_row + 1

    train_x = np.array(train_x)
    train_y = np.array(train_y)

    len = math.floor(train_x.shape[0]*0.7)
    x_train = train_x[0:len]
    y_train = train_y[0:len]
    x_test = train_x[len:]
    y_test = train_y[len:]

    x_train = x_train.reshape(x_train.shape[0], 48*48)
    x_test = x_test.reshape(x_test.shape[0], 48*48)

    print(x_train.shape) # (20096, 2304)
    print(y_train.shape) # (20096,)
    print(x_test.shape) # (8613, 2304)
    print(y_test.shape) # (8613,)

    return (x_train, y_train), (x_test, y_test)


def Model():

    batch_size = 128
    num_classes = 7
    epochs = 10

    img_rows, img_cols = 48, 48
    input_shape = (img_rows*img_cols,)

    (x_train, y_train), (x_test, y_test) = loaddata()

    # 归一化
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255
    x_test /= 255

    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    model = Sequential()
    model.add(Dense(256, activation = 'relu', input_shape = input_shape))
    model.add(Dropout(0.3))
    model.add(Dense(256, activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(256, activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(256, activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(num_classes, activation = 'softmax'))

    model.compile(loss = 'categorical_crossentropy', optimizer = 'adadelta', metrics = ['accuracy'])
    model.fit(x_train, y_train, batch_size = batch_size, epochs = epochs,verbose = 1, validation_data = (x_test, y_test))
    score = model.evaluate(x_test, y_test, verbose = 0)

    print('Test Loss: ', score[0])
    print('Test accuracy: ', score[1])

if __name__ == '__main__':
    Model()

Test Loss: 1.69847433028
Test accuracy: 0.311157552537

当层数变少时,准确率提高(代码如下)

    model = Sequential()
    model.add(Dense(256, activation = 'relu', input_shape = input_shape))
    model.add(Dropout(0.3))
    model.add(Dense(256, activation = 'relu'))
    model.add(Dropout(0.3))
    model.add(Dense(num_classes, activation = 'softmax'))

Test Loss: 1.67239785668
Test accuracy: 0.361082085223

小结

  • 比较 CNN ,DNN 的 accuracy , 可见CNN的准确率更加高
  • 当二者作为第一层是,注意输入数据格式的不同,也就是 input_shape 不同,具体看代码

参考资料

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352

推荐阅读更多精彩内容