title: GDAS006-深入理解SummarizedExperiment类
date: 2019-09-05 12:0:00
type: "tags"
tags:
- Bioconductor
categories: - Genomics Data Analysis Series
前言
在数据管理部分,我们应用summarizeOverlaps
来管理RNAseqData.HNRNPC.bam.chr14
中的BAM文件。现在我们再次来操作一下。
使用SummarizedExperiment来管理BAM文件
library(RNAseqData.HNRNPC.bam.chr14)
bfp = RNAseqData.HNRNPC.bam.chr14_BAMFILES
library(Rsamtools)
bfl = BamFileList(file=bfp)
hnrnpcLoc = GRanges("chr14", IRanges(21677296, 21737638))
library(GenomicAlignments)
library(BiocParallel)
register(SerialParam())
hnse = summarizeOverlaps(hnrnpcLoc,bfl)
hnse
## class: RangedSummarizedExperiment
## dim: 1 8
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames(8): ERR127306 ERR127307 ... ERR127304 ERR127305
## colData names(0):
hnse
是RangedSummarizedExperiment
类的一实例。这个类就类似于 ExpressionSet
,不过有着更多的内容来管理元数据,它的流程如下所示:
有效地使用SummarizedExperiment
实例涉及学习它的一些方法。为了获取HNRNPC基因的读长/区域(read/region),我们可以使用assay
方法,如下所示:
assay(hnse)
## ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304
## [1,] 5422 6320 5896 5558 172 196 316
## ERR127305
## [1,] 282
以上就是最基本的结果表示方法。列名则是样本标识符,但是有关区域检查的一些信息则已经丢失。
SummarizedExperiment中的元数据
hnse
对象还有一些其它的信息,如下所示:
rowRanges(hnse)
## GRanges object with 1 range and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] chr14 [21677296, 21737638] *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
seqinfo(hnse)
## Seqinfo object with 1 sequence from an unspecified genome; no seqlengths:
## seqnames seqlengths isCircular genome
## chr14 NA NA <NA>
metadata(hnse)
## list()
我们还可以进一步分析差异信息,从而输出更多,更广泛的信息。
通过添加输入信息来更有效地生成SummarizedExperiment
使用元数据定义感兴趣的区域
We have seen that it is sufficient to define a single GRanges to drive summarizeOverlaps
over a set of BAM files. We’d like to preserve more metadata about the regions examined. We’ll use the TxDb infrastructure, to be described in more detail later, to get a structure defining gene regions on chr14. We’ll also use the Homo.sapiens annotation package to add gene symbols.
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb = TxDb.Hsapiens.UCSC.hg19.knownGene
gr14 = genes(txdb, vals=list(tx_chrom="chr14"))
## Warning: 'elementLengths' is deprecated.
## Use 'elementNROWS' instead.
## See help("Deprecated")
## Warning: 'elementLengths' is deprecated.
## Use 'elementNROWS' instead.
## See help("Deprecated")
gr14$symbol = mapIds(Homo.sapiens, keys=gr14$gene_id, keytype="ENTREZID",
column="SYMBOL")
## 'select()' returned 1:1 mapping between keys and columns
gr14
## GRanges object with 781 ranges and 2 metadata columns:
## seqnames ranges strand | gene_id
## <Rle> <IRanges> <Rle> | <character>
## 10001 chr14 [ 71050957, 71067384] - | 10001
## 100113389 chr14 [ 45580078, 45580176] + | 100113389
## 100113391 chr14 [ 20794600, 20794698] - | 100113391
## 100124539 chr14 [ 91592770, 91592896] + | 100124539
## 100126297 chr14 [101507700, 101507781] + | 100126297
## ... ... ... ... . ...
## 9870 chr14 [ 75127955, 75179807] - | 9870
## 9878 chr14 [ 21945335, 21967319] + | 9878
## 9895 chr14 [102829300, 102968818] + | 9895
## 9950 chr14 [ 93260650, 93306304] + | 9950
## 9985 chr14 [ 24641234, 24649463] + | 9985
## symbol
## <character>
## 10001 MED6
## 100113389 SNORD127
## 100113391 SNORD126
## 100124539 SNORA11B
## 100126297 MIR300
## ... ...
## 9870 AREL1
## 9878 TOX4
## 9895 TECPR2
## 9950 GOLGA5
## 9985 REC8
## -------
## seqinfo: 93 sequences (1 circular) from hg19 genome
定义BAM文件的样本信息
现在我们有三个样本,一个用于控制,两个用于敲低。我们使用GenomicFiles
来绑定样本信息的元数据,如下所示:
char = rep(c("hela_wt", "hela_hkd"), each=4)
bff = GenomicFiles(files=path(bfl))
colData(bff)$condition = char
sid = c(1,1,1,1,2,2,3,3)
bff$sample = sid
bff
## GenomicFiles object with 0 ranges and 8 files:
## files: ERR127306_chr14.bam, ERR127307_chr14.bam, ..., ERR127304_chr14.bam, ERR127305_chr14.bam
## detail: use files(), rowRanges(), colData(), ...
比较读长覆盖区,保留元数据
我们来查看5个基因,其中就包括HNRNPC。当计算后,我们会将样本信息再绑定回结果,如下所示:
hnse = summarizeOverlaps(gr14[c(1:4,305)],files(bff))
colData(hnse) = cbind(colData(hnse), colData(bff))
hnse
## class: RangedSummarizedExperiment
## dim: 5 8
## metadata(0):
## assays(1): counts
## rownames(5): 10001 100113389 100113391 100124539 3183
## rowData names(2): gene_id symbol
## colnames(8): ERR127306 ERR127307 ... ERR127304 ERR127305
## colData names(2): condition sample
assay(hnse)
## ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303
## 10001 114 156 129 144 175 213
## 100113389 0 0 0 0 0 0
## 100113391 0 0 0 0 0 0
## 100124539 0 0 0 0 0 0
## 3183 2711 3160 2948 2779 86 98
## ERR127304 ERR127305
## 10001 210 165
## 100113389 0 0
## 100113391 0 0
## 100124539 0 0
## 3183 158 141
从上面我们可以看出,行标识符是随计数矩阵一起出现的,现在我们绘制出这几个基因的箱线图,如下所示:
par(mfrow=c(2,2))
for (i in 2:5) {
boxplot(assay(hnse)[i,]~hnse$condition, ylab=rowRanges(hnse)$symbol[i])
}
从ExpressionSet提取数据
从ExpressionSet中提取数据很容易,但是还需要基于基因组范围查询的阵列探针的子集,如下所示:
library(ALL)
data(ALL)
allse = makeSummarizedExperimentFromExpressionSet(ALL)
allse
## class: RangedSummarizedExperiment
## dim: 12625 128
## metadata(3): experimentData annotation protocolData
## assays(1): exprs
## rownames(12625): 1000_at 1001_at ... AFFX-YEL021w/URA3_at
## AFFX-YEL024w/RIP1_at
## rowData names(0):
## colnames(128): 01005 01010 ... 83001 LAL4
## colData names(21): cod diagnosis ... f.u date.last.seen
rowRanges(allse)
## Warning: 'elementLengths' is deprecated.
## Use 'elementNROWS' instead.
## See help("Deprecated")
## GRangesList object of length 12625:
## $$1000_at
## GRanges object with 0 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
##
## $$1001_at
## GRanges object with 0 ranges and 0 metadata columns:
## seqnames ranges strand
##
## $$1002_f_at
## GRanges object with 0 ranges and 0 metadata columns:
## seqnames ranges strand
##
## ...
## <12622 more elements>
## -------
## seqinfo: no sequences
总结
RangedSummarizedExperiment
类实例化了一些Bioconductor数据结构设计的一些关键原则:
- 基于样本特征的数据分析和元数据分析,并将它们以某种方式绑定在一起。
- 类似于矩阵的子集直接用于分析和样本数据分析。
- 基于范围的子集设置适用于可通过基因组坐标寻址的分析。
- 可以在
mcol
中提供关键分析特征的任意元数据(rowRanges(se)
)。 - 可以通过
metadata(se)<-
来添加任何元数据。
在后面的内容里我们还将会了解更多的关于SummarizedExperiment
改造的一些数据结构,从而用于专门用于RNA-seq的多个阶段处理和数据分析。