讲解:Math 234、data、R、RPython|Processing

Math 234 Section 1Homework 6 - Spring 2020AsymptoticsDue: Mar 26, 2020 11:59 pm.Instructions: Please write neat solutions for the problems below. Show all your work. If necessary,explain your solution in words. If you only write the answer with no work, you may not be givenany credit.Please submit your entire homework as a single pdf file. Use pdf merging tools as necessary. Forproblems 1-3, you can scan your responses using a scanner or a phone scanning app. You are notallowed to simply take a photo of your homework due to poor lighting. The grader reserves theright not to grade your submission if it is unclear.Problems1. Suppose that X1, . . . , Xn are iid with common density functionf(x | θ) = 12(1 + θx), −1 ≤ x ≤ 1for −1 ≤ θ ≤ 1. Find a consistent estimator of θ. Justify that the estimator is consistent. Hint: Find theMOM estimator.2. Let X1, . . . , Xn be iid with mean µ and variance σ2 whose second derivative g00 is continuous with g00(µ) 6= 0. Recall that X¯n =1nPni=1 Xi.(a) Show that √n|g(X¯n)−g(µ)| → 0 in distribution as n → ∞. Note that this is different from √n(g(X¯n)−g(µ)).(b) Show that √n|g(X¯n) − g(µ)| → 0 in probability as n → ∞.(c) Show that n[g(X¯n) − g(µ)] converges in distribution to 12g00(µ)σ2χ1 as n → ∞.(d) Use the previous result to show that when µ = 0.5,n[X¯n(1 − X¯n) − µ(1 − µ)] → −σ2χ21in distribution as n → ∞.Hint: For part a), mimic the proof of the Delta method showed in class, i.e. start by using the MeanValue Theorem. The Central Limit Theorem and Slutsky’s Theorem (Thm 5.5, p. 75 of Wasserman) maybe useful. For part b), look at Thm 5.4c of Wasserman (this was also discussed in lecture). For part c),construct a 2nd-order Taylor series expansion of g at µ = X¯n. You can ignore the higher-or代写Math 234作业、代做data留学生作业、代做R语言作业、代写R程序设计作业 代做Python程序|代做留学生Pdered termsin the Taylor series expansion for this problem. CLT and Slutsky’s theorem may be handy in completingyour proof.3. Continuation of Problem 3 of Homework 5. Suppose that X1, . . . , Xn are iid with distribution U(0, θ),θ > 0 is an unknown parameter. In class, we showed that ˆθn = max(X1, . . . , Xn) is the MLE. Perform thefollowing.(a) Show that ˆθn is consistent. You may freely quote the results derived in the previous homework.(b) Show that the limiting distribution of −n(ˆθn − θ) as n → ∞ is exponential. Hint: you may need torefresh on L’hopital’s rule for evaluating limits.(c) Give an approximate value for Var(ˆθn) for large n.(d) For this example, we obtain that the MLE is asymptotically exponential instead of asymtptoticallynormal as we demonstrated in lecture. Briefly explain why this does not contradict what we establishedin class. Hint: Look at the sketch of the proof for asymptotic normality of MLE. We took the derivativeof the log likelihood function with respect to θ. Can you do that here?4. R exercise. The objective of this exercise is to learn how to use R to perform bootstrap.(a) Read p. 187-190 of the Intro to Statistical Learning book. This is identical to the lecture on bootstrappingbut with more details.(b) Read p. 194-195 of the book. Only read the section “Estimating the Accuracy of a Statistic ofInterest”. Skip the part on the linear regression model.(c) Work on (a), (b), (c) of Problem 9, p. 201. For part (b), an estimate of the standard error is givenby √snwhere s is the (observed) sample standard deviation. For part (c), generate at least 1000bootstrap samples. In addition, plot a histogram of the bootstrap samples you generated. This linkon plotting histograms may be helpful. Include your responses to a pdf file that you must submit toNYU classes.转自:http://www.6daixie.com/contents/18/5013.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容