数据分类预测之python决策树

决策树是一种树状结构,它的每一个叶节点对应着一个分类,非叶节点对应着在某个属性上的划分,根据样本在该属性上的不同取值将其划分成若干个子集。对于非纯的叶节点,多数类的标号给出到达这个节点的样本所属的类。构造决策树的核心问题是在每一步如何选择适当的属性对样本做拆分。对一个分类问题,从已知类标记的训练样本中学习并构造出决策树是一个自上而下,分而治之的过程

决策树方法在分类、预测、规则提取等领域有着广泛应用。机器学习研究者J.Ross Quinlan 提出了ID3算法以后,决策树在机器学习、数据挖掘领域得到了极大的发展,之后又提出了C4.5,成为了新的监督学习算法。另外还有CART分类算法,值得一提的是ID3和CART孙法都是采用类似的方法从训练样本中学习决策树。


接下来简单叙述一下这几个算法:

ID3算法:

其核心是在决策树的各级节点上,使用信息增益方法作为属性的选择标准,来帮助确定生成每个节点所应采用的合适属性。

C4.5算法:

C4.5决策生成算法相对于ID3算法的重要改进是使用信息增益率来选择节点属性。C4.5算法可以克服ID3算法存在的不足:ID3适用于离散的描述属性,而C4.5算法即能够处理离散的描述属性,也可以处理连续的描述属性

CART算法:

CART决策树是一种十分有效的非参数分类和回归方法,通过构建树、修建树、评估树来构建一个二叉树。当终结点是连续变量时,该树为回归树;当终结点是分类变量,该树为分类树。


本文主要介绍一下ID3算法。

ID3算法的简介以及原理:

ID3算法给予信息熵来选择最佳测试属性。它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少不同取值就将样本集划分为多少子样本集,同时决策树上相应于该样本集的节点长出新的叶子节点。

根据信息论理论,采用划分样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量不确定性:信息增益值越大,不确定性越小,因此,在每个非叶节点选择信息增益最大的属性作为测试属性,这样可以得到当前情况下最纯的拆分,从而得到较小的决策树。


公式如图

显然E(A)越小,Gain(A)的值越大,说明测试属性A对于分类提供的信息越大,选择A之后对分类的不确定程度越小。

ID3的算法具体实现步骤如下:

1,对当前样本集合,计算所有属性的信息增益

2,选择信息增益最大的属性作为测试属性,把测试属性取值相同的样本划分到同一个子样本集;

3,若子样本集的类别属性只含有单个属性,则分支为叶子结点,判断其属性值并标上相应的符号,然后返回调用出;否则对子样本集递归调用本算法。


废话不多说,直接贴代码为证:

#-*- coding: utf-8 -*-

import pandasas pd

#参数初始化

inputfile ='path'

data = pd.read_excel(inputfile, index_col =u'序号')#导入数据

#数据如果是类别标签,需要转化为数据

#用1和-1分别代表各自标签

data[data ==u'标签A'] =1

data[data ==u'标签B'] =1

data[data ==u'标签B'] =1

data[data !=1] = -1

x = data.iloc[:,:3].as_matrix().astype(int)

y = data.iloc[:,3].as_matrix().astype(int)

from sklearn.treeimport DecisionTreeClassifieras DTC

dtc = DTC(criterion='entropy')#建立决策树模型,

dtc.fit(x, y)#训练模型

#导入相关函数,可视化决策树

from sklearn.treeimport export_graphviz

x = pd.DataFrame(x)

from sklearn.externals.siximport StringIO

x = pd.DataFrame(x)

with open("tree.dot", 'w')as f:

f = export_graphviz(dtc, feature_names = x.columns, out_file = f)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 5,848评论 0 25
  • 1.前言 决策树是一种基本的分类和回归方法。决策树呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。采用...
    胜利主义章北海阅读 2,642评论 0 0
  • 1、模型原理 (一)原理 1、原理:引入信息熵(不确定程度)的概念,通过计算各属性下的信息增益程度(信息增益越大,...
    Python_Franklin阅读 12,339评论 0 17
  • 一. 决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树。在分类问题中,表...
    YCzhao阅读 2,133评论 0 2
  • 分类与预测 餐饮企业经常会碰到下面的问题: 如何预测未来一段时间内,哪些顾客会流失,哪些顾客最有可能成为VIP客户...
    Skye_kh阅读 6,305评论 3 15