paddlepaddle环境搭建及简单使用

1.paddlepaddle平台简介

PaddlePaddle (PArallel Distributed Deep LEarning)是一个易用、高效、灵活、可扩展的深度学习框架。其特点如下:
-同时支持动态图和静态图,兼顾灵活性和高性能
-源于实际业务淬炼,提供应用效果领先的官方模型
-源于产业实践,输出业界领先的超大规模并行深度学习平台能力

2.环境搭建

1.选择macOS下安装

image.png

2.检查环境
查看MacOS版本
mac系统详情.png

根据Python版本安装pip3

python3 -m ensurepip
python3 -m pip --version

pip3安装完成.png

安装paddlepaddle

python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
安装截图.png

验证安装
安装完成后您可以使用 python 或 python3 进入python解释器,输入import paddle.fluid as fluid ,再输入 fluid.install_check.run_check()

安装成功.png

3.基本术语及使用

数据的表示和定义
Paddle和其他主流框架一样,使用Tensor数据结构来承载数据,包括模型中的可学习参数(如网络权重、偏置等), 网络中每一层的输入输出数据,常量数据等。
Tensor可以简单理解成一个多维数组,一般而言可以有任意多的维度。 不同的Tensor可以具有自己的数据类型和形状,同一Tensor中每个元素的数据类型是一样的, Tensor的形状就是Tensor的维度。关于Tensor的详细介绍请参阅:Tensor
在Paddle中我们使用 fluid.data 来创建数据变量, fluid.data 需要指定Tensor的形状信息和数据类型, 当遇到无法确定的维度时,可以将相应维度指定为None,如下面的代码片段所示:

import paddle.fluid as fluid

# 定义一个数据类型为int64的二维数据变量x,x第一维的维度为3,第二个维度未知,要在程序执行过程中才能确定,因此x的形状可以指定为[3, None]
x = fluid.data(name="x", shape=[3, None], dtype="int64")

# 大多数网络都会采用batch方式进行数据组织,batch大小在定义时不确定,因此batch所在维度(通常是第一维)可以指定为None
batched_x = fluid.data(name="batched_x", shape=[None, 3, None], dtype='int64')

fluid.data 之外,我们还可以使用 fluid.layers.fill_constant 来创建常量, 如下代码将创建一个维度为[3, 4], 数据类型为int64的Tensor,其中所有元素均为16(value参数所指定的值)。

import paddle.fluid as fluid
data = fluid.layers.fill_constant(shape=[3, 4], value=16, dtype='int64')

以上例子中,我们只使用了一种数据类型"int64",即有符号64位整数数据类型,更多Paddle目前支持的数据类型请查看:支持的数据类型

需要注意的是,在静态图编程方式中,上述定义的Tensor并不具有值(即使创建常量的时候指定了value), 它们仅表示将要执行的操作,在网络执行时(训练或者预测)才会进行真正的赋值操作, 如您直接打印上例代码中的data将会得对其信息的描述:

print data

输出结果:

name: "fill_constant_0.tmp_0"
type {
    type: LOD_TENSOR
    lod_tensor {
        tensor {
            data_type: INT64
            dims: 3
            dims: 4
        }
    }
}
persistable: false

在网络执行过程中,获取Tensor数值有两种方式:方式一是利用 paddle.fluid.layers.Print 创建一个打印操作, 打印正在访问的Tensor。方式二是将Variable添加在fetch_list中。

方式一的代码实现如下所示:


data = fluid.layers.fill_constant(shape=[3, 4], value=16, dtype='int64')
data = fluid.layers.Print(data, message="Print data:")

place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

ret = exe.run()

运行时的输出结果:

1571742368    Print data:    The place is:CPUPlace
Tensor[fill_constant_0.tmp_0]
    shape: [3,4,]
    dtype: x
    data: 16,16,16,16,16,16,16,16,16,16,16,16,

数据读取
使用 fluid.data 创建数据变量之后,我们需要把网络执行所需要的数据读取到对应变量中, 具体的数据准备过程,请阅读准备数据
组建网络
在Paddle中,数据计算类API统一称为Operator(算子),简称OP,大多数OP在 paddle.fluid.layers 模块中提供。
例如用户可以利用 paddle.fluid.layers.elementwise_add() 实现两个输入Tensor的加法运算:

# 定义变量
import paddle.fluid as fluid
a = fluid.data(name="a", shape=[None, 1], dtype='int64')
b = fluid.data(name="b", shape=[None, 1], dtype='int64')

# 组建网络(此处网络仅由一个操作构成,即elementwise_add)
result = fluid.layers.elementwise_add(a,b)

# 准备运行网络
cpu = fluid.CPUPlace() # 定义运算设备,这里选择在CPU下训练
exe = fluid.Executor(cpu) # 创建执行器
exe.run(fluid.default_startup_program()) # 网络参数初始化

# 读取输入数据
import numpy
data_1 = int(input("Please enter an integer: a="))
data_2 = int(input("Please enter an integer: b="))
x = numpy.array([[data_1]])
y = numpy.array([[data_2]])

# 运行网络
outs = exe.run(
    feed={'a':x, 'b':y}, # 将输入数据x, y分别赋值给变量a,b
    fetch_list=[result] # 通过fetch_list参数指定需要获取的变量结果
    )

# 输出计算结果
print "%d+%d=%d" % (data_1,data_2,outs[0][0])

输出结果:

Please enter an integer: a=7
Please enter an integer: b=3
7+3=10

组建更加复杂的网络
某些场景下,用户需要根据当前网络中的某些状态,来具体决定后续使用哪一种操作,或者重复执行某些操作。在动态图中,可以方便的使用Python的控制流语句(如for,if-else等)来进行条件判断,但是在静态图中,由于组网阶段并没有实际执行操作,也没有产生中间计算结果,因此无法使用Python的控制流语句来进行条件判断,为此静态图提供了多个控制流API来实现条件判断。这里以fluid.layers.while_loop为例来说明如何在静态图中实现条件循环的操作。
while_loop API用于实现类似while/for的循环控制功能,使用一个callable的方法cond作为参数来表示循环的条件,只要cond的返回值为True,while_loop就会循环执行循环体body(也是一个callable的方法),直到 cond 的返回值为False。对于while_loop API的详细定义和具体说明请参考文档fluid.layers.while_loop
下面的例子中,使用while_loop API进行条件循环操作,其实现的功能相当于在python中实现如下代码:

i = 0
ten = 10
while i < ten:
    i = i + 1
print('i =', i)

在静态图中使用while_loop API实现以上代码的逻辑:

# 该代码要求安装飞桨1.7+版本

# 该示例代码展示整数循环+1,循环10次,输出计数结果
import paddle.fluid as fluid
import paddle.fluid.layers as layers

# 定义cond方法,作为while_loop的判断条件
def cond(i, ten):
    return i < ten 

# 定义body方法,作为while_loop的执行体,只要cond返回值为True,while_loop就会一直调用该方法进行计算
# 由于在使用while_loop OP时,cond和body的参数都是由while_loop的loop_vars参数指定的,所以cond和body必须有相同数量的参数列表,因此body中虽然只需要i这个参数,但是仍然要保持参数列表个数为2,此处添加了一个dummy参数来进行"占位"
def body(i, dummy):
    # 计算过程是对输入参数i进行自增操作,即 i = i + 1
    i = i + 1
    return i, dummy

i = layers.fill_constant(shape=[1], dtype='int64', value=0) # 循环计数器
ten = layers.fill_constant(shape=[1], dtype='int64', value=10) # 循环次数
out, ten = layers.while_loop(cond=cond, body=body, loop_vars=[i, ten]) # while_loop的返回值是一个tensor列表,其长度,结构,类型与loop_vars相同

exe = fluid.Executor(fluid.CPUPlace())
res = exe.run(fluid.default_main_program(), feed={}, fetch_list=out)
print(res) #[array([10])]

一个完整的网络示例
一个典型的模型通常包含4个部分,分别是:输入数据定义,搭建网络(模型前向计算逻辑),定义损失函数,以及选择优化算法。

下面我们通过一个非常简单的数据预测网络(线性回归),来完整的展示如何使用Paddle静态图方式完成一个深度学习模型的组建和训练。

问题描述:给定一组数据 <X,Y>,求解出函数 f,使得 y=f(x),其中X,Y均为一维张量。最终网络可以依据输入x,准确预测出ypredict。

1.定义数据
假设输入数据X=[1 2 3 4],Y=[2 4 6 8],在网络中定义:

# 定义X数值
train_data=numpy.array([[1.0], [2.0], [3.0], [4.0]]).astype('float32')
# 定义期望预测的真实值y_true
y_true = numpy.array([[2.0], [4.0], [6.0], [8.0]]).astype('float32')

2.搭建网络(定义前向计算逻辑)

接下来需要定义预测值与输入的关系,本次使用一个简单的线性回归函数进行预测:

# 定义输入数据类型
x = fluid.data(name="x", shape=[None, 1], dtype='float32')
y = fluid.data(name="y", shape=[None, 1], dtype='float32')
# 搭建全连接网络
y_predict = fluid.layers.fc(input=x, size=1, act=None)

3.添加损失函数

完成模型搭建后,如何评估预测结果的好坏呢?我们通常在设计的网络中添加损失函数,以计算真实值与预测值的差。

在本例中,损失函数采用均方差函数

cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)

4.网络优化

确定损失函数后,可以通过前向计算得到损失值,并根据损失值对网络参数进行更新,最简单的算法是随机梯度下降法:w=w−η⋅g,由 fluid.optimizer.SGD 实现:

sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_cost)

让我们的网络训练100次,查看结果:

# 加载库
import paddle.fluid as fluid
import numpy

# 定义输入数据
train_data=numpy.array([[1.0],[2.0],[3.0],[4.0]]).astype('float32')
y_true = numpy.array([[2.0],[4.0],[6.0],[8.0]]).astype('float32')

# 组建网络
x = fluid.data(name="x",shape=[None, 1],dtype='float32')
y = fluid.data(name="y",shape=[None, 1],dtype='float32')
y_predict = fluid.layers.fc(input=x,size=1,act=None)

# 定义损失函数
cost = fluid.layers.square_error_cost(input=y_predict,label=y)
avg_cost = fluid.layers.mean(cost)

# 选择优化方法
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
sgd_optimizer.minimize(avg_cost)

# 网络参数初始化
cpu = fluid.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(fluid.default_startup_program())

# 开始训练,迭代100次
for i in range(100):
    outs = exe.run(
        feed={'x':train_data, 'y':y_true},
        fetch_list=[y_predict, avg_cost])

# 输出训练结果
print outs

输出结果:

[array([[2.2075021],
        [4.1005487],
        [5.9935956],
        [7.8866425]], dtype=float32), array([0.01651453], dtype=float32)]

运行结果与期望一致:


训练100次结果.png

让我们的网络训练1000次,输出结果:


训练1000次结果

让我们的网络训练10000次,输出结果:
训练10000次结果.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351