数据质量的评价指标是什么?

数据质量的评价指标主要包括数据的准确性(accuracy)、完整性(completeness)、简洁性(concision)及适用性(applicability),其中数据的准确性、完整性和简洁性是为了保证数据的适用性。下面针对数据质量的主要评价指标进行详细的介绍。

1.准确性
数据的准确性就是要求数据中的噪声尽可能少。为提高数据的准确性,需对数据集进行降噪处理。对于数据中偏离常规、分散的小样本数据,一般可视为噪声或异常数据,可通过最常用的异常值检测方法聚类进行处理。

2.完整性
完整性指的是数据信息是否存在缺失的状况。数据缺失的情况可能是整条数据记录缺失,也可能是数据中某个字段信息的记录缺失。不完整的数据所能借鉴的价值会大大降低,也是数据质量更为基础的一项评估标准。数据质量的完整性比较容易评估,一般通过数据统计中的记录值和唯一值进行评估。

例如,网站日志日访问量就是一个记录值,平时的日访问量在1000左右,突然某天降到100,就需要检查数据是否存在缺失了。

3.简洁性
简洁性就是要尽量选择重要的本质属性,并消除冗余。进行决策时,决策者往往抓住反映问题的主要因素,而不需要把问题的细节都搞得很清楚。在数据挖掘时,特征的个数越多,产生噪声的机会就越大。一些不必要的属性既会增大数据量,又会影响挖掘数据的质量。因此,选择较小的典型特征集不仅符合决策者的心理,而且还容易挖掘到简洁有价值的信息。

4.适用性
适用性是评价数据质量的重要标准。建立数据仓库的目的是进行数据挖掘、支持决策分析,而在现实世界中很难挖掘到满意的数据,但是我们可以尽量获取符合要求的数据。数据的质量是否能满足决策的需要是适用性的关键所在。尽管前面已经强调了数据的准确性、完整性和简洁性,但归根结底是为了数据的实际效用。从数据的实际效用上讲,适用性才是评价数据质量的核心准则。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容