10X空间转录组聚类分析回顾之SpaGCN(结合基因表达信息、空间位置和形态学)

隔离的第九天,孤独仍在,但亦师亦友,今天我们来回顾一下10X空间转录组聚类的分析软件SpaGCN,这个软件之前分享过,文章在10X空间转录组聚类分析之图卷积网络(graph convolutional network),但当时分享的时候文章还是预印版,现在文章正式发表,在SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network,发表于Nature Methods,IF28.547,我们来回顾一下算法原理和示例代码

图片.png

Overview of SpaGCN and evaluation.

SpaGCN首先构建一个图来表示考虑空间位置和组织学信息的所有点的关系。 接下来,SpaGCN 利用图卷积层来聚合来自相邻点的基因表达信息。 然后,SpaGCN 使用聚合表达式矩阵使用无监督迭代聚类算法对点进行聚类。 每个clusters被视为一个空间域,SpaGCN 然后从中检测通过 DE 分析在域中丰富的 SVG。 当单个基因不能标记一个域的表达模式时,SpaGCN 会构建一个meta基因,由多个基因组合形成,来代表该域的表达模式

图片.png

示例代码

Outline

    1. Installation
    1. Import modules
    1. Read in data
    1. Integrate gene expression and histology into a Graph
    1. Spatial domain detection using SpaGCN
    1. Identify SVGs
    1. Identify Meta Gene
    1. Multiple tissue sections analysis
Installation
pip3 install SpaGCN
#Note: you need to make sure that the pip is for python3,or we should install SpaGCN by
python3 -m pip install SpaGCN
pip3 install SpaGCN
#If you do not have permission (when you get a permission denied error), you should install SpaGCN by
pip3 install --user SpaGCN
Import python modules
import os,csv,re
import pandas as pd
import numpy as np
import scanpy as sc
import math
import SpaGCN as spg
from scipy.sparse import issparse
import random, torch
import warnings
warnings.filterwarnings("ignore")
import matplotlib.colors as clr
import matplotlib.pyplot as plt
import SpaGCN as spg
#In order to read in image data, we need to install some package. Here we recommend package "opencv"
#inatll opencv in python
#!pip3 install opencv-python
import cv2
Read in data

The current version of SpaGCN requres three input data:

  • The gene expression matrix(n by k): expression_matrix.h5(我们就读这个就可以);
  • Spatial coordinateds of samplespositions.txt;
  • Histology image(optional): histology.tif, can be tif or png or jepg.

The gene expreesion data can be stored as an AnnData object. AnnData stores a data matrix .X together with annotations of observations .obs, variables .var and unstructured annotations .uns.

"""
#Read original 10x_h5 data and save it to h5ad
from scanpy import read_10x_h5
adata = read_10x_h5("../tutorial/data/151673/expression_matrix.h5")
spatial=pd.read_csv("../tutorial/data/151673/positions.txt",sep=",",header=None,na_filter=False,index_col=0) 
adata.obs["x1"]=spatial[1]
adata.obs["x2"]=spatial[2]
adata.obs["x3"]=spatial[3]
adata.obs["x4"]=spatial[4]
adata.obs["x5"]=spatial[5]
adata.obs["x_array"]=adata.obs["x2"]
adata.obs["y_array"]=adata.obs["x3"]
adata.obs["x_pixel"]=adata.obs["x4"]
adata.obs["y_pixel"]=adata.obs["x5"]
#Select captured samples
adata=adata[adata.obs["x1"]==1]
adata.var_names=[i.upper() for i in list(adata.var_names)]
adata.var["genename"]=adata.var.index.astype("str")
adata.write_h5ad("../tutorial/data/151673/sample_data.h5ad")
"""
#Read in gene expression and spatial location
adata=sc.read("../tutorial/data/151673/sample_data.h5ad")
#Read in hitology image
img=cv2.imread("../tutorial/data/151673/histology.tif")
Integrate gene expression and histology into a Graph
#Set coordinates
x_array=adata.obs["x_array"].tolist()
y_array=adata.obs["y_array"].tolist()
x_pixel=adata.obs["x_pixel"].tolist()
y_pixel=adata.obs["y_pixel"].tolist()

#Test coordinates on the image
img_new=img.copy()
for i in range(len(x_pixel)):
    x=x_pixel[i]
    y=y_pixel[i]
    img_new[int(x-20):int(x+20), int(y-20):int(y+20),:]=0

cv2.imwrite('./sample_results/151673_map.jpg', img_new)
  • 's' 参数决定了在计算每两个点之间的欧几里得距离时赋予组织学的权重。 's = 1' 表示组织学像素强度值与 (x,y) 坐标具有相同的尺度方差,而 's' 值越大表示尺度方差越大,因此在计算欧几里得距离时对组织学的权重越高 .
  • “b”参数确定提取颜色强度时每个点的面积。
#Calculate adjacent matrix
s=1
b=49
adj=spg.calculate_adj_matrix(x=x_pixel,y=y_pixel, x_pixel=x_pixel, y_pixel=y_pixel, image=img, beta=b, alpha=s, histology=True)
#If histlogy image is not available, SpaGCN can calculate the adjacent matrix using the fnction below
#adj=calculate_adj_matrix(x=x_pixel,y=y_pixel, histology=False)
np.savetxt('./data/151673/adj.csv', adj, delimiter=',')
Spatial domain detection using SpaGCN
adata=sc.read("./data/151673/sample_data.h5ad")
adj=np.loadtxt('./data/151673/adj.csv', delimiter=',')
adata.var_names_make_unique()
spg.prefilter_genes(adata,min_cells=3) # avoiding all genes are zeros
spg.prefilter_specialgenes(adata)
#Normalize and take log for UMI
sc.pp.normalize_per_cell(adata)
sc.pp.log1p(adata)

Set hyper-parameters

  • p: Percentage of total expression contributed by neighborhoods.
  • l: Parameter to control p.
p=0.5 
#Find the l value given p
l=spg.search_l(p, adj, start=0.01, end=1000, tol=0.01, max_run=100)
  • n_clusters: Number of spatial domains wanted.
  • res: Resolution in the initial Louvain's Clustering methods. If the number of clusters is known, we can use the spg.search_res() fnction to search for suitable resolution(optional)
#If the number of clusters known, we can use the spg.search_res() fnction to search for suitable resolution(optional)
#For this toy data, we set the number of clusters=7 since this tissue has 7 layers
n_clusters=7
#Set seed
r_seed=t_seed=n_seed=100
#Seaech for suitable resolution
res=spg.search_res(adata, adj, l, n_clusters, start=0.7, step=0.1, tol=5e-3, lr=0.05, max_epochs=20, r_seed=r_seed, t_seed=t_seed, n_seed=n_seed)

Run SpaGCN

clf=spg.SpaGCN()
clf.set_l(l)
#Set seed
random.seed(r_seed)
torch.manual_seed(t_seed)
np.random.seed(n_seed)
#Run
clf.train(adata,adj,init_spa=True,init="louvain",res=res, tol=5e-3, lr=0.05, max_epochs=200)
y_pred, prob=clf.predict()
adata.obs["pred"]= y_pred
adata.obs["pred"]=adata.obs["pred"].astype('category')
#Do cluster refinement(optional)
#shape="hexagon" for Visium data, "square" for ST data.
adj_2d=spg.calculate_adj_matrix(x=x_array,y=y_array, histology=False)
refined_pred=spg.refine(sample_id=adata.obs.index.tolist(), pred=adata.obs["pred"].tolist(), dis=adj_2d, shape="hexagon")
adata.obs["refined_pred"]=refined_pred
adata.obs["refined_pred"]=adata.obs["refined_pred"].astype('category')
#Save results
adata.write_h5ad("./sample_results/results.h5ad")

Plot spatial domains

adata=sc.read("./sample_results/results.h5ad")
#Set colors used
plot_color=["#F56867","#FEB915","#C798EE","#59BE86","#7495D3","#D1D1D1","#6D1A9C","#15821E","#3A84E6","#997273","#787878","#DB4C6C","#9E7A7A","#554236","#AF5F3C","#93796C","#F9BD3F","#DAB370","#877F6C","#268785"]
#Plot spatial domains
domains="pred"
num_celltype=len(adata.obs[domains].unique())
adata.uns[domains+"_colors"]=list(plot_color[:num_celltype])
ax=sc.pl.scatter(adata,alpha=1,x="y_pixel",y="x_pixel",color=domains,title=domains,color_map=plot_color,show=False,size=100000/adata.shape[0])
ax.set_aspect('equal', 'box')
ax.axes.invert_yaxis()
plt.savefig("./sample_results/pred.png", dpi=600)
plt.close()

#Plot refined spatial domains
domains="refined_pred"
num_celltype=len(adata.obs[domains].unique())
adata.uns[domains+"_colors"]=list(plot_color[:num_celltype])
ax=sc.pl.scatter(adata,alpha=1,x="y_pixel",y="x_pixel",color=domains,title=domains,color_map=plot_color,show=False,size=100000/adata.shape[0])
ax.set_aspect('equal', 'box')
ax.axes.invert_yaxis()
plt.savefig("./sample_results/refined_pred.png", dpi=600)
plt.close()
图片.png
Identify SVGs
#Read in raw data
raw=sc.read("../tutorial/data/151673/sample_data.h5ad")
raw.var_names_make_unique()
raw.obs["pred"]=adata.obs["pred"].astype('category')
raw.obs["x_array"]=raw.obs["x2"]
raw.obs["y_array"]=raw.obs["x3"]
raw.obs["x_pixel"]=raw.obs["x4"]
raw.obs["y_pixel"]=raw.obs["x5"]
#Convert sparse matrix to non-sparse
raw.X=(raw.X.A if issparse(raw.X) else raw.X)
raw.raw=raw
sc.pp.log1p(raw)
  • target: Target domain to identify SVGs.
  • min_in_group_fraction: Minium in-group expression fraction.
  • min_in_out_group_ratio: Miniumn (in-group expression fraction) / (out-group expression fraction).
  • min_fold_change: Miniumn (in-group expression) / (out-group expression).
  • r: Radius to detect a spot's neighboring spots.
#Use domain 0 as an example
target=0
#Set filtering criterials
min_in_group_fraction=0.8
min_in_out_group_ratio=1
min_fold_change=1.5
#Search radius such that each spot in the target domain has approximately 10 neighbors on average
adj_2d=spg.calculate_adj_matrix(x=x_array, y=y_array, histology=False)
start, end= np.quantile(adj_2d[adj_2d!=0],q=0.001), np.quantile(adj_2d[adj_2d!=0],q=0.1)
r=spg.search_radius(target_cluster=target, cell_id=adata.obs.index.tolist(), x=x_array, y=y_array, pred=adata.obs["pred"].tolist(), start=start, end=end, num_min=10, num_max=14,  max_run=100)
#Detect neighboring domains
nbr_domians=spg.find_neighbor_clusters(target_cluster=target,
                                   cell_id=raw.obs.index.tolist(), 
                                   x=raw.obs["x_array"].tolist(), 
                                   y=raw.obs["y_array"].tolist(), 
                                   pred=raw.obs["pred"].tolist(),
                                   radius=r,
                                   ratio=1/2)

nbr_domians=nbr_domians[0:3]
de_genes_info=spg.rank_genes_groups(input_adata=raw,
                                target_cluster=target,
                                nbr_list=nbr_domians, 
                                label_col="pred", 
                                adj_nbr=True, 
                                log=True)
#Filter genes
de_genes_info=de_genes_info[(de_genes_info["pvals_adj"]<0.05)]
filtered_info=de_genes_info
filtered_info=filtered_info[(filtered_info["pvals_adj"]<0.05) &
                            (filtered_info["in_out_group_ratio"]>min_in_out_group_ratio) &
                            (filtered_info["in_group_fraction"]>min_in_group_fraction) &
                            (filtered_info["fold_change"]>min_fold_change)]
filtered_info=filtered_info.sort_values(by="in_group_fraction", ascending=False)
filtered_info["target_dmain"]=target
filtered_info["neighbors"]=str(nbr_domians)
print("SVGs for domain ", str(target),":", filtered_info["genes"].tolist())
#Plot refinedspatial domains
color_self = clr.LinearSegmentedColormap.from_list('pink_green', ['#3AB370',"#EAE7CC","#FD1593"], N=256)
for g in filtered_info["genes"].tolist():
    raw.obs["exp"]=raw.X[:,raw.var.index==g]
    ax=sc.pl.scatter(raw,alpha=1,x="y_pixel",y="x_pixel",color="exp",title=g,color_map=color_self,show=False,size=100000/raw.shape[0])
    ax.set_aspect('equal', 'box')
    ax.axes.invert_yaxis()
    plt.savefig("./sample_results/"+g+".png", dpi=600)
    plt.close()
图片.png
Identify Meta Gene
#Use domain 2 as an example
target=2
meta_name, meta_exp=spg.find_meta_gene(input_adata=raw,
                    pred=raw.obs["pred"].tolist(),
                    target_domain=target,
                    start_gene="GFAP",
                    mean_diff=0,
                    early_stop=True,
                    max_iter=3,
                    use_raw=False)

raw.obs["meta"]=meta_exp
#Plot meta gene
g="GFAP"
raw.obs["exp"]=raw.X[:,raw.var.index==g]
ax=sc.pl.scatter(raw,alpha=1,x="y_pixel",y="x_pixel",color="exp",title=g,color_map=color_self,show=False,size=100000/raw.shape[0])
ax.set_aspect('equal', 'box')
ax.axes.invert_yaxis()
plt.savefig("./sample_results/"+g+".png", dpi=600)
plt.close()

raw.obs["exp"]=raw.obs["meta"]
ax=sc.pl.scatter(raw,alpha=1,x="y_pixel",y="x_pixel",color="exp",title=meta_name,color_map=color_self,show=False,size=100000/raw.shape[0])
ax.set_aspect('equal', 'box')
ax.axes.invert_yaxis()
plt.savefig("./sample_results/meta_gene.png", dpi=600)
plt.close()
图片.png
Multiple tissue sections analysis
adata1=sc.read("./data/Mouse_brain/MA1.h5ad")
adata2=sc.read("./data/Mouse_brain/MP1.h5ad")
img1=cv2.imread("./data/Mouse_brain/MA1_histology.tif")
img2=cv2.imread("./data/Mouse_brain/MP1_histology.tif")
b=49
s=1
x_pixel1=adata1.obs["x4"].tolist()
y_pixel1=adata1.obs["x5"].tolist()
adata1.obs["color"]=spg.extract_color(x_pixel=x_pixel1, y_pixel=y_pixel1, image=img1, beta=b)
z_scale=np.max([np.std(x_pixel1), np.std(y_pixel1)])*s
adata1.obs["z"]=(adata1.obs["color"]-np.mean(adata1.obs["color"]))/np.std(adata1.obs["color"])*z_scale

x_pixel2=adata2.obs["x4"].tolist()
y_pixel2=adata2.obs["x5"].tolist()
adata2.obs["color"]=spg.extract_color(x_pixel=x_pixel2, y_pixel=y_pixel2, image=img2, beta=b)
z_scale=np.max([np.std(x_pixel2), np.std(y_pixel2)])*s
adata2.obs["z"]=(adata2.obs["color"]-np.mean(adata2.obs["color"]))/np.std(adata2.obs["color"])*z_scale
del img1, img2
from anndata import AnnData
adata1.obs["x_pixel"]=x_pixel1
adata1.obs["y_pixel"]=y_pixel1
adata2.obs["x_pixel"]=x_pixel2-np.min(x_pixel2)+np.min(x_pixel1)
adata2.obs["y_pixel"]=y_pixel2-np.min(y_pixel2)+np.max(y_pixel1)
adata1.var_names_make_unique()
adata2.var_names_make_unique()
adata_all=AnnData.concatenate(adata1, adata2,join='inner',batch_key="dataset_batch",batch_categories=["0","1"])
X=np.array([adata_all.obs["x_pixel"], adata_all.obs["y_pixel"], adata_all.obs["z"]]).T.astype(np.float32)
adj=spg.pairwise_distance(X)
sc.pp.normalize_per_cell(adata_all, min_counts=0)
sc.pp.log1p(adata_all)
p=0.5 
#Find the l value given p
l=spg.search_l(p, adj, start=0.01, end=1000, tol=0.01, max_run=100)
res=1.0
seed=100
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
clf=spg.SpaGCN()
clf.set_l(l)
clf.train(adata_all,adj,init_spa=True,init="louvain",res=res, tol=5e-3, lr=0.05, max_epochs=200)
y_pred, prob=clf.predict()
adata_all.obs["pred"]= y_pred
adata_all.obs["pred"]=adata_all.obs["pred"].astype('category')
colors_use=['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#bcbd22', '#17becf', '#aec7e8', '#ffbb78', '#98df8a', '#ff9896', '#bec1d4', '#bb7784', '#0000ff', '#111010', '#FFFF00',   '#1f77b4', '#800080', '#959595', 
 '#7d87b9', '#bec1d4', '#d6bcc0', '#bb7784', '#8e063b', '#4a6fe3', '#8595e1', '#b5bbe3', '#e6afb9', '#e07b91', '#d33f6a', '#11c638', '#8dd593', '#c6dec7', '#ead3c6', '#f0b98d', '#ef9708', '#0fcfc0', '#9cded6', '#d5eae7', '#f3e1eb', '#f6c4e1', '#f79cd4']
num_celltype=len(adata_all.obs["pred"].unique())
adata_all.uns["pred_colors"]=list(colors_use[:num_celltype])
ax=sc.pl.scatter(adata_all,alpha=1,x="y_pixel",y="x_pixel",color="pred",show=False,size=150000/adata_all.shape[0])
ax.set_aspect('equal', 'box')
ax.axes.invert_yaxis()
plt.savefig("./sample_results/mouse_barin_muti_sections_domains.png", dpi=600)
plt.close()
图片.png

生活很好,有你更好

©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容