FastText

数据实例:

__label__1 23 345 122 32 456

__label__0 56 78 34 789 23 57



\bullet __label__:类别前缀

\bullet “23 345 122 32 456”:分词结果

API:

from fastText import train_supervised, train_unsupervised, load_model

model = train_supervised( input="train.txt", epoch=25, lr=0.1, wordNgrams=2, verbose=2, minCount=1,label="__label__")

input:文件路径

epoch:训练轮数

lr:学习率

miniCount:次品阀值,小于这个的被过滤掉

wordNgrams:N-gram个数

dim:维度

label:类别前缀

训练词向量:

model=train_unsupervised(input, model="skipgram", lr=0.05, dim=100, ws=5, epoch=5, minCount=5,minCountLabel=0, wordNgrams=1,loss="ns", bucket=2000000,thread=12, lrUpdateRate=100, label="__label__")

label:类别前缀

model.save_model("model.bin")

loaded_model=fastText.load_model("model.bin")

loaded_model.get_word_vector("11146")

model.test("valid.txt"):N 总数  p:准确率   c:召回率

model.predict(texts):类别预测

model.predict-prob(texts):预测概率

Fast Text

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容

  • 1.Getting and preparing the data 每行包括:label,句子 >> head co...
    骑鲸公子_阅读 1,491评论 0 3
  • 训练数据格式 训练数据格式为一行一个句子,每个词用空格分割,如果一个词带有前缀“__label__”,那么它就作为...
    骑鲸公子_阅读 5,610评论 2 5
  • main.cc main():1.train(), 2.test(),3. quantize(), 4.print...
    骑鲸公子_阅读 1,551评论 0 0
  • 一. 前言 自然语言处理(NLP)是机器学习,人工智能中的一个重要领域。文本表达是 NLP中的基础技术,文本分类则...
    machinelearning阅读 13,230评论 0 17
  • 预备知识 为了更好的理解fastText,我们先来了解一些预备知识。第一个是BoW模型,也叫做词袋模型。BoW模型...
    lwyaoshen阅读 17,708评论 1 24