Artifact 支持的类型
1. S3(Amazon Simple Storage Service)
s3 协议是 amazon 开发的一种面向数据存储的网络协议,也是开源社区存储中间件常使用的一种协议。已知的很多开源中间件都支持此协议如:minio,ceph等,另外几乎所有大厂的数据服务也都声明支持此协议。
按照官网的案例yaml如下:
- 需要注意的是,在使用minio之前,你需要创建minio集群,并且在集群内可以访问到。
- 如果需要访问minio你还需要创建一个k8s secret,如果只想简单测试,可以使用如下命令创建secret
kubectl create secret generic my-s3-credentials --from-literal=accessKey=<YOUR-ACCESS-KEY> --from-literal=secretKey=<YOUR-SECRET-KEY>
metadata:
namespace: argo
generateName: input-artifact-s3-
spec:
entrypoint: input-artifact-s3-example
templates:
- name: input-artifact-s3-example
inputs:
artifacts:
- name: my-art
path: /my-artifact/argo.yaml
s3:
endpoint: minio-svc.argo:9000
insecure: true
bucket: test
key: argo.yaml
region: us-west-2
accessKeySecret:
name: my-s3-credentials
key: accessKey
secretKeySecret:
name: my-s3-credentials
key: secretKey
container:
image: debian:latest
command: [sh, -c]
args: ["cat /my-artifact/argo.yaml"]
执行完毕之后,查看日志可以看到,我们从minio上下载到的文件使用cat命令打印出来了。
W
time="2022-07-26T13:05:42.551Z" level=info msg="capturing logs" argo=true
# This is an auto-generated file. DO NOT EDIT
apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
name: clusterworkflowtemplates.argoproj.io
spec:
group: argoproj.io
names:
kind: ClusterWorkflowTemplate
listKind: ClusterWorkflowTemplateList
plural: clusterworkflowtemplates
shortNames:
- clusterwftmpl
- cwft
singular: clusterworkflowtemplate
scope: Cluster
versions:
···
2. OSS
OSS(Object Storage Service)即对象存储服务,国内我了解到的aliyun默认在使用这种方案。
3. HDFS
知名大数据组件Hadoop File System即HDFS,设计为块存储模式,适合大文件的存储。
4. GIT
可以使用GIT协议拉取仓库中的代码进行CI/CD,这也是Argo目前使用比较广泛的一个场景。
5. HTTP
Argo也支持使用HTTP协议在网络上下载所有公开的文件。
- 这里的文件是kubectl的cli程序,目的源是google的网站,国内的话有可能没有办法下载,如果没有办法下载,你可以重写一下脚本,从你可以访问的地址下载一个文本文档,并使用cat命令来验证你确实把这个文件下载下来了。
metadata:
generateName: arguments-artifacts-
spec:
entrypoint: kubectl-input-artifact
arguments:
artifacts:
- name: kubectl
http:
url: https://storage.googleapis.com/kubernetes-release/release/v1.8.0/bin/linux/amd64/kubectl
templates:
- name: kubectl-input-artifact
inputs:
artifacts:
- name: kubectl
path: /usr/local/bin/kubectl
mode: 0755
container:
image: debian:9.4
command: [sh, -c]
args: ["kubectl version"]
6. GCS
GCS 即谷歌的文件存储服务。可以使用此协议下载google cloud上存储的文件,这里条件有限,不对这类文件类型测试,有需要的可以自行测试。
7. Azure
支持从微软云上下载你所需要的资源文件,这里条件有限,不对这类文件类型测试,有需要的可以自行测试。
使用案例
1. Step之间的文件交换
这里使用的是官网提供的案例,yaml如下:
metadata:
generateName: artifact-passing-
spec:
entrypoint: artifact-example
templates:
- name: artifact-example
steps:
- - name: generate-artifact
template: whalesay
- - name: consume-artifact
template: print-message
arguments:
artifacts:
# bind message to the hello-art artifact
# generated by the generate-artifact step
- name: message
from: "{{steps.generate-artifact.outputs.artifacts.hello-art}}"
- name: whalesay
container:
image: docker/whalesay:latest
command: [sh, -c]
args: ["cowsay hello world | tee /tmp/hello_world.txt"]
outputs:
artifacts:
# generate hello-art artifact from /tmp/hello_world.txt
# artifacts can be directories as well as files
- name: hello-art
path: /tmp/hello_world.txt
- name: print-message
inputs:
artifacts:
# unpack the message input artifact
# and put it at /tmp/message
- name: message
path: /tmp/message
container:
image: alpine:latest
command: [sh, -c]
args: ["cat /tmp/message"]
2. 给你的workflow添加Artifact参数
我们之前的章节有提到过,Inputs和Arguments对象所包含的值都是类似的,都有parameters和artifacts两个数组。这意味着你可以在Workflow的arguments字段也添加Artifacts的对象值。
以下是从官网中找到的案例yaml文件:
- 这里是使用http协议从网络上下载的文件,你也可以使用其他的协议。
metadata:
generateName: arguments-artifacts-
spec:
entrypoint: kubectl-input-artifact
arguments:
artifacts:
- name: kubectl
http:
url: https://storage.googleapis.com/kubernetes-release/release/v1.8.0/bin/linux/amd64/kubectl
templates:
- name: kubectl-input-artifact
inputs:
artifacts:
- name: kubectl
path: /usr/local/bin/kubectl
mode: 0755
container:
image: debian:9.4
command: [sh, -c]
args: ["kubectl version"]
3. 给你的workflow添加输出文件
如果说你想要输出参数,你可以在templates的节点上添加输出的文件,并没有类似Arguments的全局输出文件。
在Template中的outputs中定义你需要输出的文件,你也可以使用上面提到的各种协议,来定义你的文件需要输出到哪里。
下面是来自官网参考的yaml文件:
metadata:
generateName: output-artifact-s3-
spec:
entrypoint: whalesay
templates:
- name: whalesay
container:
image: docker/whalesay:latest
command: [sh, -c]
args: ["cowsay hello world | tee /tmp/hello_world.txt"]
outputs:
artifacts:
- name: message
path: /tmp
# It is possible to disable tar.gz archiving by setting the archive strategy to 'none'
# Disabling archiving has the following limitations on S3: symbolic links will not be
# uploaded, as S3 does not support the concept/file mode of symlinks.
# archive:
# none: {}
s3:
# Use the corresponding endpoint depending on your S3 provider:
# AWS: s3.amazonaws.com
# GCS: storage.googleapis.com
# Minio: my-minio-endpoint.default:9000
endpoint: s3.amazonaws.com
bucket: my-bucket
# Specify the bucket region. Note that if you want Argo to figure out this automatically,
# you can set additional statement policy that allows `s3:GetBucketLocation` action.
# For details, check out: https://argoproj.github.io/argo-workflows/configure-artifact-repository/#configuring-aws-s3
region: us-west-2
# NOTE: by default, output artifacts are automatically tarred and gzipped before saving.
# As a best practice, .tgz or .tar.gz should be suffixed into the key name so the
# resulting object has an accurate file extension and mime-type. If archive is set to
# 'none', then preserve the appropriate file extension for the key name
key: path/in/bucket/hello_world.txt.tgz
# accessKeySecret and secretKeySecret are secret selectors. It references the k8s secret
# named 'my-s3-credentials'. This secret is expected to have have the keys 'accessKey'
# and 'secretKey', containing the base64 encoded credentials to the bucket.
accessKeySecret:
name: my-s3-credentials
key: accessKey
secretKeySecret:
name: my-s3-credentials
key: secretKey