PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation总结

文章链接

摘要

​ 提出一个新颖的模型---PointNet,直接以3D点云坐标作为输入,在满足输入点云排列不变性(允许任意数量输入且输出不以输入点的顺序所改变条件下,提取点云所代表物体的特征信息。

介绍

  1. 三维深度学习

    1. 多视角2D图片表示三维物体


    2. 使用体素构建物体三维模型, 使用3DCNN提取特征


  1. 点云(PointNet): 一组点坐标(x,y,z)构成的集合

    1. 点无序性
    2. 点数量不确定性
    3. 非结构化数据,点云是分布在空间中的XYZ点。无法使用传统CNN提取特征
    4. 点噪声
    5. 点缺失
    6. 刚体旋转会使点云发生大幅变化,但两个不同的点云其实代表同一物体
  2. PointNet

    输入一个点云(无序点坐标集),包含n个点,每个点代表一个向量,该向量可以只包含坐标(x,y,z),也可以包含更多信息,例如曲面法线向量(nx, ny, nz),

    输出从这个点云中提取的特征信息

关键

  1. 对称方法

    输出不以输入顺序改变而变化的函数,例如a+b = b + a, 论文中使用了MaxPool

  2. 变换矩阵固定视角解决平移/旋转不变性问题 — STN网络

  3. 网络结构

  1. 多层的1x1卷积(视野域始终基于单点)提取单点坐标特征,每个点1024维。

  2. 接着通过MaxPool,与传统的MaxPool不同,该MaxPool操作是在每一维特征维度上取最大响应值(每个点有1024维特征,共N个点,在每一维上遍历N个点,取最大值作为最终输出,所以最终得到1x1024的特征向量),相当于综合了全局信息

  3. 最终输出1024维特征信息

不足

​ PointNet提取的是每一个独立的点的特征描述以及全局点云的特征描述,并没有考虑局部特征和结构约束,此外,只通过Max提取全局信息也不是那么可靠。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容