Java 多线程
多线程:指的是这个程序(一个进程)运行时产生了不止一个线程
并行与并发:
并行:多个cpu实例或者多台机器同时执行一段处理逻辑,是真正的同时。
并发:通过cpu调度算法,让用户看上去同时执行,实际上从cpu操作层面不是真正的同时。并发往往在场景中有公用的资源,那么针对这个公用的资源往往产生瓶颈,我们会用TPS或者QPS来反应这个系统的处理能力。
线程状态:
新建状态(New):当线程对象对创建后,即进入了新建状态,如:Thread t = new MyThread();
就绪状态(Runnable):当调用线程对象的start()方法(t.start();),线程即进入就绪状态。处于就绪状态的线程,只是说明此线程已经做好了准备,随时等待CPU调度执行,并不是说执行了t.start()此线程立即就会执行;
运行状态(Running):当CPU开始调度处于就绪状态的线程时,此时线程才得以真正执行,即进入到运行状态。注:就 绪状态是进入到运行状态的唯一入口,也就是说,线程要想进入运行状态执行,首先必须处于就绪状态中;
阻塞状态(Blocked):处于运行状态中的线程由于某种原因,暂时放弃对CPU的使用权,停止执行,此时进入阻塞状态,直到其进入到就绪状态,才 有机会再次被CPU调用以进入到运行状态。根据阻塞产生的原因不同,阻塞状态又可以分为三种:
1.等待阻塞:运行状态中的线程执行wait()方法,使本线程进入到等待阻塞状态;
2.同步阻塞:线程在获取synchronized同步锁失败(因为锁被其它线程所占用),它会进入同步阻塞状态;
3.其他阻塞:通过调用线程的sleep()或join()或发出了I/O请求时,线程会进入到阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。
死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。
Java多线程的创建及启动
1.继承Thread类,重写该类的run()方法。
通过重写run()方法定义了一个新的线程类MyThread,其中run()方法的方法体代表了线程需要完成的任务,称之为线程执行体。当创建此线程类对象时一个新的线程得以创建,并进入到线程新建状态。通过调用线程对象引用的start()方法,使得该线程进入到就绪状态,此时此线程并不一定会马上得以执行,这取决于CPU调度时机。
2.实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thread类的target来创建Thread对象,该Thread对象才是真正的线程对象。
Thread类本身也是实现了Runnable接口,而run()方法最先是在Runnable接口中定义的方法。
Thread类中对Runnable接口中run()方法的实现:
@Override
public void run() {
if (target != null) {
target.run();
}
}
也就是说,当执行到Thread类中的run()方法时,会首先判断target是否存在,存在则执行target中的run()方法,也就是实现了Runnable接口并重写了run()方法的类中的run()方法。
3.使用Callable和Future接口创建线程。具体是创建Callable接口的实现类,并实现call()方法。并使用FutureTask类来包装Callable实现类的对象,且以此FutureTask对象作为Thread对象的target来创建线程。
在实现Callable接口中,此时不再是run()方法了,而是call()方法,此call()方法作为线程执行体,同时还具有返回值!在创建新的线程时,是通过FutureTask来包装MyCallable对象,同时作为了Thread对象的target。
FutureTask类实际上是同时实现了Runnable和Future接口,由此才使得其具有Future和Runnable双重特性。通过Runnable特性,可以作为Thread对象的target,而Future特性,使得其可以取得新创建线程中的call()方法的返回值。
Java多线程的就绪、运行和死亡状态
就绪状态转换为运行状态:当此线程得到处理器资源;
运行状态转换为就绪状态:当此线程主动调用yield()方法或在运行过程中失去处理器资源。
运行状态转换为死亡状态:当此线程线程执行体执行完毕或发生了异常。
此处需要特别注意的是:当调用线程的yield()方法时,线程从运行状态转换为就绪状态,但接下来CPU调度就绪状态中的哪个线程具有一定的随机性,因此,可能会出现A线程调用了yield()方法后,接下来CPU仍然调度了A线程的情况。
1.sleep()方法
在指定时间内让当前正在执行的线程暂停执行,但不会释放“锁标志”。不推荐使用。
sleep()使当前线程进入阻塞状态,在指定时间内不会执行。
2.wait()方法
在其他线程调用对象的notify或notifyAll方法前,导致当前线程等待。线程会释放掉它所占有的“锁标志”,从而使别的线程有机会抢占该锁。
当前线程必须拥有当前对象锁。如果当前线程不是此锁的拥有者,会抛出IllegalMonitorStateException异常。
唤醒当前对象锁的等待线程使用notify或notifyAll方法,也必须拥有相同的对象锁,否则也会抛出IllegalMonitorStateException异常。
waite()和notify()必须在synchronized函数或synchronized block中进行调用。如果在non-synchronized函数或non-synchronized block中进行调用,虽然能编译通过,但在运行时会发生IllegalMonitorStateException的异常。
3.yield方法
暂停当前正在执行的线程对象。
yield()只是使当前线程重新回到可执行状态,所以执行yield()的线程有可能在进入到可执行状态后马上又被执行。
yield()只能使同优先级或更高优先级的线程有执行的机会。
4.join方法
等待该线程终止。
等待调用join方法的线程结束,再继续执行。如:t.join();//主要用于等待t线程运行结束,若无此句,main则会执行完毕,导致结果不可预测。
Java线程池
如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?在Java中可以通过线程池来达到这样的效果。
线程池核心ThreadPoolExecutor类
ThreadPoolExecutor类的几个参数:
corePoolSize:核心池的大小,这个参数跟后面讲述的线程池的实现原理有非常大的关系。在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务,除非调用了prestartAllCoreThreads()或者prestartCoreThread()方法,从这2个方法的名字就可以看出,是预创建线程的意思,即在没有任务到来之前就创建corePoolSize个线程或者一个线程。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中;
maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程;
keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
unit:参数keepAliveTime的时间单位
workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
ArrayBlockingQueue;
LinkedBlockingQueue;
SynchronousQueue;
threadFactory:线程工厂,主要用来创建线程;
handler:表示当拒绝处理任务时的策略,有以下四种取值
ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务
Executor是一个顶层接口,在它里面只声明了一个方法execute(Runnable),返回值为void,参数为Runnable类型,从字面意思可以理解,就是用来执行传进去的任务的;
然后ExecutorService接口继承了Executor接口,并声明了一些方法:submit、invokeAll、invokeAny以及shutDown等;
抽象类AbstractExecutorService实现了ExecutorService接口,基本实现了ExecutorService中声明的所有方法;然后ThreadPoolExecutor继承了类AbstractExecutorService。
在ThreadPoolExecutor类中有几个非常重要的方法:
execute();
submit();
shutdown();
shutdownNow();
execute()方法实际上是Executor中声明的方法,在ThreadPoolExecutor进行了具体的实现,这个方法是ThreadPoolExecutor的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行。
submit()方法是在ExecutorService中声明的方法,在AbstractExecutorService就已经有了具体的实现,在ThreadPoolExecutor中并没有对其进行重写,这个方法也是用来向线程池提交任务的,但是它和execute()方法不同,它能够返回任务执行的结果,去看submit()方法的实现,会发现它实际上还是调用的execute()方法,只不过它利用了Future来获取任务执行结果
shutdown()和shutdownNow()是用来关闭线程池的。
runState表示当前线程池的状态,它是一个volatile变量用来保证线程之间的可见性;
下面的几个static final变量表示runState可能的几个取值。
当创建线程池后,初始时,线程池处于RUNNING状态;
如果调用了shutdown()方法,则线程池处于SHUTDOWN状态,此时线程池不能够接受新的任务,它会等待所有任务执行完毕;
如果调用了shutdownNow()方法,则线程池处于STOP状态,此时线程池不能接受新的任务,并且会去尝试终止正在执行的任务;
当线程池处于SHUTDOWN或STOP状态,并且所有工作线程已经销毁,任务缓存队列已经清空或执行结束后,线程池被设置为TERMINATED状态。
任务提交给线程池之后的处理策略,这里总结一下主要有4点:
如果当前线程池中的线程数目小于corePoolSize,则每来一个任务,就会创建一个线程去执行这个任务;
如果当前线程池中的线程数目>=corePoolSize,则每来一个任务,会尝试将其添加到任务缓存队列当中,若添加成功,则该任务会等待空闲线程将其取出去执行;若添加失败(一般来说是任务缓存队列已满),则会尝试创建新的线程去执行这个任务;
如果当前线程池中的线程数目达到maximumPoolSize,则会采取任务拒绝策略进行处理;
如果线程池中的线程数量大于 corePoolSize时,如果某线程空闲时间超过keepAliveTime,线程将被终止,直至线程池中的线程数目不大于corePoolSize;如果允许为核心池中的线程设置存活时间,那么核心池中的线程空闲时间超过keepAliveTime,线程也会被终止。
线程池中的线程初始化
默认情况下,创建线程池之后,线程池中是没有线程的,需要提交任务之后才会创建线程。
在实际中如果需要线程池创建之后立即创建线程,可以通过以下两个方法办到:
prestartCoreThread():初始化一个核心线程;
prestartAllCoreThreads():初始化所有核心线程
任务缓存队列及排队策略
在前面我们多次提到了任务缓存队列,即workQueue,它用来存放等待执行的任务。
workQueue的类型为BlockingQueue<Runnable>,通常可以取下面三种类型:
1)ArrayBlockingQueue:基于数组的先进先出队列,此队列创建时必须指定大小;
2)LinkedBlockingQueue:基于链表的先进先出队列,如果创建时没有指定此队列大小,则默认为Integer.MAX_VALUE;
3)synchronousQueue:这个队列比较特殊,它不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。
线程池的关闭
ThreadPoolExecutor提供了两个方法,用于线程池的关闭,分别是shutdown()和shutdownNow(),其中:
shutdown():不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务
shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务
三种定义好的线程池:
在java doc中,并不提倡我们直接使用ThreadPoolExecutor,而是使用Executors类中提供的几个静态方法来创建线程池:
Executors.newCachedThreadPool();//创建一个缓冲池,缓冲池容量大小为Integer.MAX_VALUE
Executors.newSingleThreadExecutor(); //创建容量为1的缓冲池
Executors.newFixedThreadPool(int);//创建固定容量大小的缓冲池
下面是这三个静态方法的具体实现;
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
从它们的具体实现来看,它们实际上也是调用了ThreadPoolExecutor,只不过参数都已配置好了。
1)newFixedThreadPool创建的线程池corePoolSize和maximumPoolSize值是相等的,它使用的LinkedBlockingQueue;
2)newSingleThreadExecutor将corePoolSize和maximumPoolSize都设置为1,也使用的LinkedBlockingQueue;
3)newCachedThreadPool将corePoolSize设置为0,将maximumPoolSize设置为Integer.MAX_VALUE,使用的SynchronousQueue,也就是说来了任务就创建线程运行,当线程空闲超过60秒,就销毁线程。
如何合理配置线程池的大小
一般需要根据任务的类型来配置线程池大小:
如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1
如果是IO密集型任务,参考值可以设置为2*NCPU