【转载】期望最大化(EM)

转载自 期望最大化(EM)

〇、说明

在看到的资料里,包括周志华教授的《机器学习》[1]、李航博士的《统计学习方法》[2],大多数材料把期望最大化算法看做是一个解决含有隐变量优化问题的算法,我认为这是对期望最大化算法的狭义理解;而在吴军博士的《数学之美》[3]中,吴军博士将交替优化参数和模型直到最优的这一类算法(书中没有这样表述,我自己对书中内容的理解),称作期望最大化算法,我认为这是对期望最大化算法的广义理解。对于对算法的宏观理解,个人认为吴军博士的广义理解更好理解;但对于解决实际问题,还是要具体到每一个可以编程实现的算法。

一、一句话简介

期望最大化算法(Expectation Maximization),是一种渐进逼近算法;定义一个最优化函数后,分为两步:根据参数调整模型(E步);根据模型调整参数(M步);E步和M步交替进行,直至最优(局部)。

二、最简单的例子

一个不是很恰当的例子,塔吊盖楼房。

目标函数:盖楼房盖到预定高度。E步:根据楼房现有高度调整塔吊高度(根据参数调整模型);M步:根据现有塔吊高度将楼房盖到尽可能高(根据模型调整参数);交替进行直到楼房达到预定高度。

三、广义期望最大化算法包括

狭义期望最大化算法,K均值算法[3],Baum-Welch算法[3],GIS算法[3],等等。

四、狭义期望最大化算法

1、算法引出

在考虑求对于模型参数,使样本结果极大似然估计的算法中,如果存在隐变量而使得极大似然估计无法直接求解,则这时候可以使用期望最大化(EM)算法来求解。

2、算法描述[2]

3、注意

EM算法对初值是敏感的,并且收敛到局部极值。常用的办法是选取几个不同的初值进行迭代,然后对得到的各个估计值加以比较,从中选择最好的[2]。

五、参考

1、《机器学习》,周志华著

2、《统计学习方法》,李航著

3、《数学之美》,吴军著

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容

  • 〇、说明 在看到的资料里,包括周志华教授的《机器学习》[1]、李航博士的《统计学习方法》[2],大多数材料把期望最...
    Herbert002阅读 3,072评论 0 0
  • 在上一篇文章写到了EM算法的收敛性证明以后便匆匆的结尾,然后我出去玩了几天,玩的爽了,回来开始继续补之前的flag...
    云时之间阅读 3,126评论 2 8
  • 转载 http://blog.csdn.net/zouxy09 EM算法是一种迭代算法,用于含有隐含变量的概率模型...
    Jlan阅读 2,154评论 1 13
  • EM算法是英文expectation-maximization算法的英文简写,翻译过来就是期望最大化算法,其实是一...
    云时之间阅读 4,301评论 0 13
  • 在“Hinton是如何理解PCA?”里面,我们体会到Hinton高人一等的见解。 Hinton, 这个深度学习的缔...
    史春奇阅读 3,154评论 0 13