平台 windows,linux没试过应该也可以只需将虹软sdk换成linux版本即可。
软件依赖 cv2、flask、虹软sdk3版本(2版本的也可以)
main_flask是以图片的方式在浏览器上实时浏览,
main_client是一个窗口的形式展现实时监测视频数据。
虹软的sdk怎么搞就不多说了,自己看官网。
具体代码如下:
- flask程序主入口 main_flask.py
import face_dll
import face_class
from ctypes import *
import cv2
import face_function as fun
import face_feature_extract
import video_camera
from flask import Flask, abort, request, jsonify, Response
app = Flask(__name__)
Appkey = b''
SDKey = b''
'''
存放人脸库的信息,key为对应的图片名即为1.jpg或者2.jpg
'''
faceInfos = {'1':{'name':'Ju Jingyi','gender':'girl','age':'25','image':'images/1.jpg'},'2':{'name':'Ju Jingyi','gender':'girl','age':'25','image':'images/2.jpg'}}
'''
激活sdk,激活一次即可
'''
def active():
ret = fun.active(Appkey, SDKey)
if ret == 0 or ret == 90114:
print('激活成功:', ret)
else:
print('激活失败:', ret)
pass
def init():
# 初始化 1 视频(0x00000000)或图片(0xFFFFFFFF)模式,
ret = fun.init(0x00000000)
if ret[0] == 0:
print('初始化成功:', ret, '句柄', fun.Handle)
else:
print('初始化失败:', ret)
def gen():
videoCamera = video_camera.VideoCamera(faceFeatures, faceInfos)
while True:
ret, frame = videoCamera.get_frame()
if ret:
yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame.tobytes() + b'\r\n\r\n')
'''
返回图片流
'''
@app.route('/video_feed/')
def video_feed():
return Response(gen(),mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == "__main__":
#active()
# 加载人脸资源
faceFeatures = face_feature_extract.load_face_feature(faceInfos)
init()
app.run(host="0.0.0.0", port=8080, debug=True, threaded=True, processes=True)
- 摄像头类 video_camera.py
import cv2
import face_function as fun
import face_feature_extract
import face_class
'''
摄像头类
'''
class VideoCamera(object):
def __init__(self, faceFeatures, faceInfos):
# 通过opencv获取实时视频流
self.videoCapture = cv2.VideoCapture(0, cv2.CAP_DSHOW)
self.frame_width = int(self.videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH))
self.frame_height = int(
self.videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.faceFeatures = faceFeatures
self.faceInfos = faceInfos
def __del__(self):
self.videoCapture.release()
'''
将视频帧转换为字节流返回
'''
def get_frame(self):
ret, frame = self.videoCapture.read()
if ret:
# 加载图片
imageData = face_class.ImageData(
frame, self.frame_width, self.frame_height)
ret, faces = fun.detectFaces(fun.deal_image_data(imageData))
if ret == 0:
frame = fun.deal_frame(
imageData, faces, self.faceFeatures, self.faceInfos)
img_fps = 80
img_param = [int(cv2.IMWRITE_JPEG_QUALITY), img_fps]
# 转化
ret, frame = cv2.imencode('.jpg', frame, img_param)
return ret, frame
3.人脸识别相关函数 face_function.py
import face_dll
import face_class
from ctypes import *
import cv2
from io import BytesIO
# from Main import *
Handle = c_void_p()
c_ubyte_p = POINTER(c_ubyte)
# 激活函数
def active(appkey, sdkey):
ret = face_dll.active(appkey, sdkey)
return ret
# 初始化函数
def init(model):
'''
1 视频(0x00000000)或图片(0xFFFFFFFF)模式,
2 角度(),
3 识别的最小人脸比例 = 图片长边 / 人脸框长边的比值 默认推荐值:VIDEO模式推荐16;IMAGE模式推荐32
4 最大需要检测的人脸个数,取值范围[1,50],
5 需要启用的功能组合,可多选ASF_FACE_DETECT 0x00000001 //人脸检测 SF_FACERECOGNITION 0x00000004 //人脸特征 ASF_AGE 0x00000008 //年龄 ASF_GENDER 0x00000010 //性别
ASF_FACE3DANGLE 0x00000020 //3D角度 ASF_LIVENESS 0x00000080 //RGB活体 ASF_IR_LIVENESS 0x00000400 //IR活体 这些属性均是以常量值进行定义,可通过 | 位运算符进行组合使用。
例如 MInt32 combinedMask = ASF_FACE_DETECT | ASF_FACERECOGNITION | ASF_LIVENESS;
6 返回激活句柄
'''
ret = face_dll.initEngine(model, 0x1, 16, 10, 5, byref(Handle))
return ret, Handle
# cv2记载图片并处理
def LoadImg(imageData):
img = cv2.imread(imageData.filepath)
sp = img.shape
img = cv2.resize(img, (sp[1]//4*4, sp[0]//4*4))
sp = img.shape
imageData.image = img
imageData.width = sp[1]
imageData.height = sp[0]
return imageData
'''
处理图片改变大小
'''
def deal_image_data(imageData):
shape = imageData.image.shape
image = cv2.resize(imageData.image, (shape[1]//4*4, shape[0]//4*4))
shape = image.shape
imageData.image = image
imageData.width = shape[1]
imageData.height = shape[0]
return imageData
def detectFaces(imageData):
faces = face_class.ASF_MultiFaceInfo()
imgby = bytes(imageData.image)
imgcuby = cast(imgby, c_ubyte_p)
ret = face_dll.detectFaces(
Handle, imageData.width, imageData.height, 0x201, imgcuby, byref(faces))
return ret, faces
# 显示人脸识别图片
def showimg(im, faces):
for i in range(0, faces.faceNum):
ra = faces.faceRect[i]
cv2.rectangle(im.image, (ra.left, ra.top),
(ra.right, ra.bottom), (255, 0, 0,), 2)
cv2.imshow('faces', im.image)
cv2.waitKey(0)
# 显示人脸识别图片
def showimg2(imageData, faces, faceFeatures, faceInfos):
for i in range(0, faces.faceNum):
# 画出人脸框
ra = faces.faceRect[i]
cv2.rectangle(imageData.image, (ra.left, ra.top),
(ra.right, ra.bottom), (255, 0, 0,), 2)
peopleName = 'unknown'
res = 0.5
# 提取单人1特征
ft = getsingleface(faces, i)
ret, faceFeature = faceFeatureExtract(imageData, ft)
if ret == 0:
for item in faceFeatures:
ret, result = faceFeatureCompare(
faceFeature, item['faceFeature'])
if ret == 0:
if result > res:
res = result
peopleName = faceInfos[item['id']]['name']
cv2.putText(imageData.image, peopleName, (ra.left, ra.top - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0,), 1, cv2.LINE_AA)
cv2.imshow('faces', imageData.image)
def deal_frame(imageData, faces, faceFeatures, faceInfos):
for i in range(0, faces.faceNum):
# 画出人脸框
ra = faces.faceRect[i]
cv2.rectangle(imageData.image, (ra.left, ra.top),
(ra.right, ra.bottom), (255, 0, 0,), 2)
peopleName = 'unknown'
res = 0.5
# 提取单人1特征
ft = getsingleface(faces, i)
ret, faceFeature = faceFeatureExtract(imageData, ft)
if ret == 0:
for item in faceFeatures:
ret, result = faceFeatureCompare(
faceFeature, item['faceFeature'])
if ret == 0:
if result > res:
res = result
peopleName = faceInfos[item['id']]['name']
cv2.putText(imageData.image, peopleName, (ra.left, ra.top - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 0,), 1, cv2.LINE_AA)
return imageData.image
# 提取人脸特征
def faceFeatureExtract(im, ft):
detectedFaces = face_class.ASF_FaceFeature()
img = im.image
imgby = bytes(im.image)
imgcuby = cast(imgby, c_ubyte_p)
ret = face_dll.faceFeatureExtract(
Handle, im.width, im.height, 0x201, imgcuby, ft, byref(detectedFaces))
if ret == 0:
retz = face_class.ASF_FaceFeature()
retz.featureSize = detectedFaces.featureSize
# 必须操作内存来保留特征值,因为c++会在过程结束后自动释放内存
retz.feature = face_dll.malloc(detectedFaces.featureSize)
face_dll.memcpy(retz.feature, detectedFaces.feature,
detectedFaces.featureSize)
return ret, retz
else:
return ret, None
# 特征值比对,返回比对结果
def faceFeatureCompare(faceFeature1, FaceFeature2):
result = c_float()
ret = face_dll.faceFeatureCompare(
Handle, faceFeature1, FaceFeature2, byref(result))
return ret, result.value
# 单人特征写入文件
def writeFTFile(feature, filepath):
f = BytesIO(string_at(feature.feature, feature.featureSize))
a = open(filepath, 'wb')
a.write(f.getvalue())
a.close()
# 从多人中提取单人数据
def getsingleface(singleface, index):
ft = face_class.ASF_SingleFaceInfo()
ra = singleface.faceRect[index]
ft.faceRect.left = ra.left
ft.faceRect.right = ra.right
ft.faceRect.top = ra.top
ft.faceRect.bottom = ra.bottom
ft.faceOrient = singleface.faceOrient[index]
return ft
# 从文件获取特征值
def ftfromfile(filepath):
fas = face_class.ASF_FaceFeature()
f = open(filepath, 'rb')
b = f.read()
f.close()
fas.featureSize = b.__len__()
fas.feature = face_dll.malloc(fas.featureSize)
face_dll.memcpy(fas.feature, b, fas.featureSize)
return fas
4.人脸特征值提取face_feature_extract.py
import face_dll
import face_class
import cv2
import face_function as fun
import os
from ctypes import string_at
'''
存放人脸特征值的集合
'''
faceFeatures = []
'''
初始化sdk设置为图片模式以加载更为精确的特征值集合
'''
def init():
# 初始化
ret = fun.init(0xFFFFFFFF)
if ret[0] == 0:
print('初始化成功:', ret, '句柄', fun.Handle)
else:
print('初始化失败:', ret)
'''
提取图片文件里面的人脸特征值
'''
def face_feature_extract(filepath):
imageData = face_class.ImageLoadData(filepath)
imageData = fun.LoadImg(imageData)
ret, faces = fun.detectFaces(imageData)
if ret == 0:
# 提取单人1特征
ft = fun.getsingleface(faces, 0)
ret, faceFeature = fun.faceFeatureExtract(imageData, ft)
return ret, faceFeature
'''
读取人脸资源库所有的图片
'''
def read_images(filePath):
for i, j, files in os.walk(filePath):
return files
def load_face_feature(faceInfos):
init()
for info in faceInfos:
imagePath = faceInfos[info]['image']
if imagePath.find('.jpg'):
ret, faceFeature = face_feature_extract(imagePath)
if ret == 0:
print("add faceFeature", info)
faceFeatures.append({'id': info, 'faceFeature': faceFeature})
return faceFeatures
if __name__ == "__main__":
faceInfos = {'1':{'name':'Ju Jingyi','gender':'girl','age':'25','image':'images/1.jpg'},'2':{'name':'Ju Jingyi','gender':'girl','age':'25','image':'images/2.jpg'}}
load_face_feature(faceInfos)
5.特征值对比 face_feature_compare.py
import face_dll
import face_class
import face_function as fun
import face_feature_extract
'''
本地图片提取的特征值与内存的特征值对比
'''
def face_feature_compare(faceFeature):
# 结果比对
faceFeatures = face_feature_extract.loadFaceFeature('images/')
for item in faceFeatures:
ret, result = fun.faceFeatureCompare(faceFeature, item['faceFeature'])
if ret == 0:
print('name %s similarity %s' % (item['name'], result))
if __name__ == "__main__":
ret, faceFeature = face_feature_extract.faceFeatureExtract(
'images/JuJingyi.jpg')
if ret == 0:
face_feature_compare(faceFeature)
6.c++中的结构体python封装 face_class.py
from ctypes import c_int32, c_char_p, Structure, POINTER, c_void_p, c_float, c_int8, c_uint32
# 人脸框
'''
MRECT* faceRect 人脸框数组
MInt32* faceOrient 人脸角度数组
MInt32 faceNum 检测到的人脸数
MInt32* faceID 一张人脸从进入画面直到离开画面,faceID不变。
在VIDEO模式下有效,IMAGE模式下为空
'''
class MRECT(Structure):
_fields_ = [(u'left', c_int32), (u'top', c_int32),
(u'right', c_int32), (u'bottom', c_int32)]
# 版本信息 版本号,构建日期,版权说明
'''
MPChar Version 版本号
MPChar BuildDate 构建日期
MPChar CopyRight 版权说明
'''
class ASF_VERSION(Structure):
_fields_ = [('Version', c_char_p), ('BuildDate',
c_char_p), ('CopyRight', c_char_p)]
# 单人人脸信息 人脸狂,人脸角度
'''
MRECT faceRect 人脸框
MInt32 faceOrient 人脸角度
'''
class ASF_SingleFaceInfo(Structure):
_fields_ = [('faceRect', MRECT), ('faceOrient', c_int32)]
# 多人人脸信息 人脸框数组,人脸角度数组,人脸数
'''
MRECT* faceRect 人脸框数组
MInt32* faceOrient 人脸角度数组
MInt32 faceNum 检测到的人脸数
MInt32* faceID 一张人脸从进入画面直到离开画面,faceID不变。在VIDEO模式下有效,IMAGE模式下为空
'''
class ASF_MultiFaceInfo(Structure):
_fields_ = [(u'faceRect', POINTER(MRECT)), (u'faceOrient',
POINTER(c_int32)), (u'faceNum', c_int32)]
# 人脸特征 人脸特征,人脸特征长度
'''
MByte* feature 人脸特征
MInt32 featureSize 人脸特征长度
'''
class ASF_FaceFeature(Structure):
_fields_ = [('feature', c_void_p), ('featureSize', c_int32)]
# 自定义图片类
class ImageData:
def __init__(self, image, width, height):
self.image = image
self.width = width
self.height = height
# 自定义图片类
class ImageLoadData:
def __init__(self, filepath):
self.filepath = filepath
self.image = None
self.width = 0
self.height = 0
#年龄信息
'''
MInt32* ageArray 0:未知; >0:年龄
MInt32 num 检测的人脸数
'''
class ASF_AgeInfo(Structure):
_fields_ = [('ageArray', POINTER(c_int32)), ('num', c_int32)]
#性别信息
'''
MInt32* genderArray 0:男性; 1:女性; -1:未知
MInt32 num 检测的人脸数
'''
class ASF_GenderInfo(Structure):
_fields_ = [('genderArray', POINTER(c_int32)), ('num', c_int32)]
#3D角度信息
'''
MFloat* roll 横滚角
MFloat* yaw 偏航角
MFloat* pitch 俯仰角
MInt32* status 0:正常; 非0:异常
MInt32 num 检测的人脸个数
'''
class ASF_Face3DAngle(Structure):
_fields_ = [('roll', POINTER(c_float)), ('yaw', POINTER(c_float)), ('pitch', POINTER(c_float)), ('status', POINTER(c_int32)), ('num', c_int32)]
#活体置信度
'''
MFloat thresholdmodel_BGR BGR活体检测阈值设置,默认值0.5
MFloat thresholdmodel_IR IR活体检测阈值设置,默认值0.7
'''
class ASF_LivenessThreshold(Structure):
_fields_ = [('thresholdmodel_BGR', c_float), ('thresholdmodel_IR', c_float)]
#活体信息
'''
MInt32* isLive 0:非真人; 1:真人;-1:不确定; -2:传入人脸数 > 1;-3: 人脸过小;-4: 角度过大;-5: 人脸超出边界
MInt32 num 检测的人脸个数
'''
class ASF_LivenessInfo(Structure):
_fields_ = [('isLive', POINTER(c_int32)), ('num', c_int32)]
#图像数据信息,该结构体在 asvloffscreen. 基础的头文件中
'''
MUInt32 u32PixelArrayFormat 颜色格式
MInt32 i32Width 图像宽度
MInt32 i32Height 图像高度
MUInt8** ppu8Plane 图像数据
MInt32* pi32Pitch 图像步长
'''
class ASVLOFFSCREEN(Structure):
_fields_ = [('u32PixelArrayFormat', c_uint32), ('i32Width', c_int32), ('i32Height', c_int32), ('ppu8Plane', POINTER(POINTER(c_int32))), ('pi32Pitch', POINTER(c_int32))]
- sdk库pyhton接口封装 face_dll.py
from ctypes import c_int32, c_char_p, c_void_p, c_float, c_size_t, c_ubyte, c_long, cdll, POINTER, CDLL
from face_class import *
wuyongdll = CDLL('libarcsoft/libarcsoft_face.dll')
dll = CDLL('libarcsoft/libarcsoft_face_engine.dll')
dllc = cdll.msvcrt
ASF_DETECT_MODE_VIDEO = 0x00000000
ASF_DETECT_MODE_IMAGE = 0xFFFFFFFF
c_ubyte_p = POINTER(c_ubyte)
# 激活
active = dll.ASFActivation
active.restype = c_int32
active.argtypes = (c_char_p, c_char_p)
# 初始化
initEngine = dll.ASFInitEngine
initEngine.restype = c_int32
initEngine.argtypes = (c_long, c_int32, c_int32,
c_int32, c_int32, POINTER(c_void_p))
# 人脸识别
detectFaces = dll.ASFDetectFaces
detectFaces.restype = c_int32
detectFaces.argtypes = (c_void_p, c_int32, c_int32,
c_int32, POINTER(c_ubyte), POINTER(ASF_MultiFaceInfo))
# 特征提取
faceFeatureExtract = dll.ASFFaceFeatureExtract
faceFeatureExtract.restype = c_int32
faceFeatureExtract.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(
c_ubyte), POINTER(ASF_SingleFaceInfo), POINTER(ASF_FaceFeature))
# 特征比对
faceFeatureCompare = dll.ASFFaceFeatureCompare
faceFeatureCompare.restype = c_int32
faceFeatureCompare.argtypes = (c_void_p, POINTER(
ASF_FaceFeature), POINTER(ASF_FaceFeature), POINTER(c_float))
malloc = dllc.malloc
free = dllc.free
memcpy = dllc.memcpy
malloc.restype = c_void_p
malloc.argtypes = (c_size_t, )
free.restype = None
free.argtypes = (c_void_p, )
memcpy.restype = c_void_p
memcpy.argtypes = (c_void_p, c_void_p, c_size_t)
#ASFFaceFeatureExtractEx第二次特征提取
'''
hEngine in 引擎句柄
imgData in 图像数据
faceInfo in 单人脸信息(人脸框、人脸角度)
feature out 提取到的人脸特征信息
'''
faceFeatureExtractEx = dll.ASFFaceFeatureExtractEx
faceFeatureExtractEx.restype = c_int32
faceFeatureExtractEx.argtypes = (c_void_p, POINTER(ASVLOFFSCREEN), POINTER(ASF_SingleFaceInfo), POINTER(ASF_FaceFeature))
#设置RGB/IR活体阈值,若不设置内部默认RGB:0.5 IR:0.7
'''
hEngine in 引擎句柄
threshold in 活体阈值,推荐RGB:0.5 IR:0.7
'''
setLivenessParam = dll.ASFSetLivenessParam
setLivenessParam.restype = c_int32
setLivenessParam.argtypes = (c_void_p, ASF_LivenessThreshold)
#人脸属性检测(年龄/性别/人脸3D角度),最多支持4张人脸信息检测,超过部分返回未知(活体仅支持单张人脸检测,超出返回未知),接口不支持IR图像检测
'''
hEngine in 引擎句柄
width in 图片宽度,为4的倍数
height in 图片高度,YUYV/I420/NV21/NV12格式为2的倍数;BGR24格式无限制;
format in 支持YUYV/I420/NV21/NV12/BGR24
ASVL_PAF_NV21 2050 8-bit Y 通道,8-bit 2x2 采样 V 与 U 分量交织通道
ASVL_PAF_NV12 2049 8-bit Y 通道,8-bit 2x2 采样 U 与 V 分量交织通道
ASVL_PAF_RGB24_B8G8R8 513 RGB 分量交织,按 B, G, R, B 字节序排布
ASVL_PAF_I420 1537 8-bit Y 通道, 8-bit 2x2 采样 U 通道, 8-bit 2x2 采样 V通道
ASVL_PAF_YUYV 1289 YUV 分量交织, V 与 U 分量 2x1 采样,按 Y0, U0, Y1,V0 字节序排布
ASVL_PAF_GRAY 1793 8-bit IR图像
ASVL_PAF_DEPTH_U16 3074 16-bit IR图像
imgData in 图像数据
detectedFaces in 多人脸信息
combinedMask in 1.检测的属性(ASF_AGE、ASF_GENDER、 ASF_FACE3DANGLE、ASF_LIVENESS),支持多选 2.检测的属性须在引擎初始化接口的combinedMask参数中启用
#define ASF_FACE_DETECT 0x00000001 //人脸检测
#define ASF_FACERECOGNITION 0x00000004 //人脸特征
#define ASF_AGE 0x00000008 //年龄
#define ASF_GENDER 0x00000010 //性别
#define ASF_FACE3DANGLE 0x00000020 //3D角度
#define ASF_LIVENESS 0x00000080 //RGB活体
#define ASF_IR_LIVENESS 0x00000400 //IR活体
多组合 MInt32 processMask = ASF_AGE | ASF_GENDER | ASF_FACE3DANGLE | ASF_LIVENESS;
'''
ASVL_PAF_RGB24_B8G8R8 = 513
process = dll.ASFProcess
process.restype = c_int32
process.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte), ASF_MultiFaceInfo, c_int32)
#人脸信息检测(年龄/性别/人脸3D角度),最多支持4张人脸信息检测,超过部分返回未知(活体仅支持单张人脸检测,超出返回未知),接口不支持IR图像检测。
'''
hEngine in 引擎句柄
imgData in 图像数据
detectedFaces in 多人脸信息
combinedMask in
1.检测的属性(ASF_AGE、ASF_GENDER、 ASF_FACE3DANGLE、ASF_LIVENESS),支持多选
2.检测的属性须在引擎初始化接口的combinedMask参数中启用
'''
processEx = dll.ASFProcessEx
processEx.restype = c_int32
processEx.argtypes = (c_void_p, POINTER(c_ubyte), ASF_MultiFaceInfo, c_int32)
#ASFGetAge 获取年龄信息。
'''
hEngine in 引擎句柄
ageInfo out 检测到的年龄信息数组
'''
getAge = dll.ASFGetAge
getAge.restype = c_int32
getAge.argtypes = (c_void_p, ASF_AgeInfo)
#ASFGetGender 获取性别信息。
'''
hEngine in 引擎句柄
genderInfo out 检测到的性别信息数组
'''
getGender = dll.ASFGetGender
getGender.restype = c_int32
getGender.argtypes = (c_void_p, ASF_GenderInfo)
#ASFGetFace3DAngle 获取3D角度信息。
'''
hEngine in 引擎句柄
p3DAngleInfo out 检测到的3D角度信息数组
'''
getFace3DAngle = dll.ASFGetFace3DAngle
getFace3DAngle.restype = c_int32
getFace3DAngle.argtypes = (c_void_p, ASF_Face3DAngle)
#ASFGetLivenessScore 获取RGB活体信息。
'''
hEngine in 引擎句柄
livenessInfo out 检测到的活体信息
'''
getLivenessScore = dll.ASFGetLivenessScore
getLivenessScore.restype = c_int32
getLivenessScore.argtypes = (c_void_p, ASF_LivenessInfo)
#ASFProcess_IR 该接口仅支持单人脸 IR 活体检测,超出返回未知
'''
hEngine in 引擎句柄
width in 图片宽度,为4的倍数
height in 图片高度
format in 图像颜色格式
imgData in 图像数据
detectedFaces in 多人脸信息
combinedMask in 目前仅支持 ASF_IR_LIVENESS(0x00000400)
'''
process_IR = dll.ASFProcess_IR
process_IR.restype = c_int32
process_IR.argtypes = (c_void_p, c_int32, c_int32, c_int32, POINTER(c_ubyte), ASF_MultiFaceInfo, c_int32)
#ASFProcessEx_IR 该接口仅支持单人脸 IR 活体检测,超出返回未知
'''
hEngine in 引擎句柄
imgData in 图像数据
detectedFaces in 多人脸信息
combinedMask in 目前仅支持 ASF_IR_LIVENESS
'''
processEx_IR = dll.ASFProcessEx_IR
processEx_IR.restype = c_int32
processEx_IR.argtypes = (c_void_p, POINTER(c_ubyte), ASF_MultiFaceInfo, c_int32)
#ASFGetLivenessScore_IR 获取IR活体信息。
'''
hEngine in 引擎句柄
livenessInfo out 检测到的IR活体信息
'''
getLivenessScore_IR = dll.ASFGetLivenessScore_IR
getLivenessScore_IR.restype = c_int32
getLivenessScore_IR.argtypes = (c_void_p, POINTER(c_ubyte), ASF_LivenessInfo)
#ASFGetVersion 获取SDK版本信息。
'''
'''
getVersion = dll.ASFGetVersion
getVersion.restype = ASF_VERSION
#ASFUninitEngine 销毁SDK引擎。
'''
hEngine in 引擎句柄
'''
uninitEngine = dll.ASFUninitEngine
uninitEngine.restype = c_int32
uninitEngine.argtypes = (c_void_p,)
8.窗口的形式展现 main_client.py
import face_dll
import face_class
from ctypes import *
import cv2
import face_function as fun
import face_feature_extract
Appkey = b''
SDKey = b''
'''
存放人脸库的信息,key为对应的图片名即为1.jpg或者2.jpg
'''
faceInfos = {'1':{'name':'Ju Jingyi','gender':'girl','age':'25','image':'images/1.jpg'},'2':{'name':'Ju Jingyi','gender':'girl','age':'25','image':'images/2.jpg'}}
'''
激活sdk,激活一次即可
'''
def active():
ret = fun.active(Appkey, SDKey)
if ret == 0 or ret == 90114:
print('激活成功:', ret)
else:
print('激活失败:', ret)
pass
def init():
# 初始化 1 视频(0x00000000)或图片(0xFFFFFFFF)模式,
ret = fun.init(0x00000000)
if ret[0] == 0:
print('初始化成功:', ret, '句柄', fun.Handle)
else:
print('初始化失败:', ret)
def start(faceFeatures):
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
while True:
# get a frame
ret, frame = cap.read()
if ret:
# 加载图片
imageData = face_class.ImageData(frame, frame_width, frame_height)
ret, faces = fun.detectFaces(fun.deal_image_data(imageData))
if ret == 0:
fun.showimg2(imageData, faces, faceFeatures, faceInfos)
else:
pass
# show a frame
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
#active()
# 加载人脸资源
faceFeatures = face_feature_extract.load_face_feature(faceInfos)
init()
start(faceFeatures)
项目地址:码云