使用selenium爬取pubmed论文信息

一、任务描述

         从pubmed上面爬取论文题目、摘要和keywords;
         数据选取:leukemia(白血病)、hypertension(高血压)、cancer(癌症)、anemia(贫血)、gastritis(胃炎)、tuberculosis(肺结核);

二、完整代码

# 完整代码如下
import urllib
import time
from lxml import etree
from selenium import webdriver
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.common.exceptions import TimeoutException


class crabInfo(object):
    browser = webdriver.Chrome()
    start_url = 'https://www.ncbi.nlm.nih.gov/pubmed/?term='
    wait = WebDriverWait(browser, 5)

    def __init__(self, keywordlist):
        self.temp = [urllib.parse.quote(i) for i in keywordlist]
        self.keyword = '%2C'.join(self.temp)
        self.title = ' AND '.join(self.temp)
        self.url = crabInfo.start_url + self.keyword
        self.headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'}
        self.file = open('information.txt', 'w')
        self.status = True
        self.yearlist = []

    # 设置初始化
    def click_init(self, ):
        self.browser.get(self.url)
        self.wait.until(EC.element_to_be_clickable((By.CSS_SELECTOR, '#_ds1 > li > ul > li:nth-child(1) > a'))).click()
        self.wait.until(
            EC.element_to_be_clickable(
                (By.XPATH, '//ul[@class="inline_list left display_settings"]/li[3]/a/span[4]'))).click()
        self.wait.until(EC.element_to_be_clickable(
            (By.CSS_SELECTOR, '#display_settings_menu_ps > fieldset > ul > li:nth-child(1) > label'))).click()
        print("爬取五年的论文数据,每页显示200条数据......")

    # 获取页面文档
    def get_response(self):
        self.html = self.browser.page_source
        self.doc = etree.HTML(self.html)

    # 获取列表页的论文PMID
    def get_info(self):
        self.baseurl = 'https://www.ncbi.nlm.nih.gov/pubmed/'
        self.art_timeanddoi = self.doc.xpath('//div[@class="rprt"]/div[2]/div[2]/div/dl/dd/text()')
        for pmid in self.art_timeanddoi:
            url_content = self.baseurl + pmid  # 拼接论文详情页的地址
            print(url_content)
            self.browser.get(url_content)  # 进入论文详情页
            self.get_response()  # 进入页面后重新获取页面结构
            self.get_detail(pmid)  # 获取论文的详情信息
            self.browser.back()  # 从论文详情页返回列表页
            self.get_response()

    def get_detail(self, pmid):
        abstract = self.doc.xpath('//div[@class="abstr"]/div/p/text()')  # 获取论文摘要信息
        keywords = self.doc.xpath('//div[@class="keywords"]/p/text()')  # 获取论文keywords信息
        title = self.doc.xpath('//div[@class="rprt abstract"]/h1/text()')  # 获取论文title
        fileName = "/Users/mac/Desktop/pubmed/data/" + str(pmid) + ".txt"  # 打开输出论文信息的.txt文件,每个文件用pmid命名
        result = open(fileName, 'w')
        result.write("[Title]\r\n")
        result.write(''.join(str(i) for i in title))
        result.write("\r\n[Astract]\r\n")
        result.write(''.join(str(i) for i in abstract))
        result.write("\r\n[Keywords]\r\n")
        result.write(''.join(str(i) for i in keywords))
        result.close()
        print(str(pmid) + ".txt书写完毕")

    # 跳转到下一个页面
    def next_page(self):
        try:
            self.nextpage = self.wait.until(  # 注意这里不是立即点击的,要判断是否可以立即点击
                EC.element_to_be_clickable((By.XPATH, '//*[@title="Next page of results"]')))
        except TimeoutException:
            self.status = False

    def main(self):
        self.click_init()  # 页面设置初始化
        time.sleep(3)  # 等待
        self.get_response()  # 获取新页面的页面结构
        count = 0  # 用count来计数总共要爬取的论文数量,初始为0
        while True:
            self.get_info()  # 首先获取当前列表页的论文信息
            self.next_page()  # 进入下一页
            if self.status:  # 判断跳转是否成功
                self.nextpage.click()  # 执行跳转的点击操作
                self.get_response()
            else:
                print("跳转未成功......")
                break
            count = count + 1
            print(str(count))
            if count == 2:  # 可以根据需要修改count的值,这里只爬取20000条
                break


if __name__ == '__main__':
    arr = ['tuberculosis']  # arr保存需要查找的论文关键字,如cancer等
    a = crabInfo(arr)
    print(str(arr))
    a.main()

三、总结

         代码还有一点小bug,我测试的时候每页5条数据是ok的,正式用的时候每页200条结果翻页失败,不知道是什么原因,后面我再调一下,因为我爬的是好几种疾病的数据,爬了1000条,5种疾病的数据,有10来条数据是两个疾病都能搜出来的论文,数据格式如下:

[Title]
Hemotrophic mycoplasma in Simmental cattle in Bavaria: prevalence, blood parameters, and transplacental transmission of 'Candidatus Mycoplasma haemobos' and Mycoplasma wenyonii.
[Astract]
The significance of hemotrophic mycoplasma in cattle remains unclear. Especially in Europe, their epidemiological parameters as well as pathophysiological influence on cows are lacking. The objectives of this study were: (1) to describe the prevalence of 'Candidatus Mycoplasma haemobos' ('C. M. haemobos') and Mycoplasma wenyonii (M. wenyonii) in Bavaria, Germany; (2) to evaluate their association with several blood parameters; (3) to explore the potential of vertical transmission in Simmental cattle; and (4) to evaluate the accuracy of acridine-orange-stained blood smears compared to real-time polymerase chain reaction (PCR) results to detect hemotrophic mycoplasma. A total of 410 ethylenediaminetetraacetic acid-blood samples from cows from 41 herds were evaluated by hematology, acridine-orange-stained blood smears, and real-time PCR. Additionally, blood samples were taken from dry cows of six dairy farms with positive test results for hemotrophic mycoplasma to investigate vertical transmission of infection.The period prevalence of both species was 60.24% (247/410), C. M. haemobos 56.59% (232/410), M. wenyonii 8.54% (35/410) and for coinfection 4.88% (20/410). Of the relevant blood parameters, only mean cell volume (MCV), mean cell hemoglobin (MCH), and white blood cell count (WBC) showed differences between the groups of infected and non-infected individuals. There were lower values of MCV (P < 0.01) and MCH (P < 0.01) and higher values of WBC (P < 0.05) in 'C. M. haemobos'-infected cows. In contrast, co-infected individuals had only higher WBC (P < 0.05). In M. wenyonii-positive blood samples, MCH was significantly lower (P < 0.05). Vertical transmission of 'C. M. haemobos' was confirmed in two calves. The acridine-orange-method had a low sensitivity (37.39%), specificity (65.97%), positive predictive value (63.70%) and negative predictive value (39.75%) compared to PCR.'Candidatus Mycoplasma haemobos' was more prevalent than M. wenyonii in Bavarian Simmental cattle, but infection had little impact on evaluated blood parameters. Vertical transmission of the infection was rare. Real-time PCR is the preferred diagnostic method compared to the acridine-orange-method.
[Keywords]
Acridine-orange-stained blood smears; ; Blood parameters; Cattle; Hemotrophic mycoplasma; M. wenyonii; Prevalence; Real-time PCR; Vertical transmission; ‘C. M. haemobos’
数据命名为论文在pubmed的编号

         由于不熟悉selenium的api函数,走了不少弯路,在大佬代码的基础上根据自己的需求做了一些修改,后续还会继续系统的学习爬虫;

四、参考文献:

[python爬虫] Selenium定向爬取PubMed生物医学摘要信息
利用selenium爬取pubmed,获得搜索的关键字最近五年发表文章数量
从零开始写Python爬虫 --- 导言

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容