2021-09-05-ElasticSearch(HTTP语法)

1. 安装

输入地址:http://localhost:9200,测试结果

{
  "name" : "LAPTOP-TI7HRI2R",
  "cluster_name" : "elasticsearch",
  "cluster_uuid" : "tfoiv_YgTDKbtuGCQPhgQA",
  "version" : {
    "number" : "7.9.3",
    "build_flavor" : "default",
    "build_type" : "zip",
    "build_hash" : "c4138e51121ef06a6404866cddc601906fe5c868",
    "build_date" : "2020-10-16T10:36:16.141335Z",
    "build_snapshot" : false,
    "lucene_version" : "8.6.2",
    "minimum_wire_compatibility_version" : "6.8.0",
    "minimum_index_compatibility_version" : "6.0.0-beta1"
  },
  "tagline" : "You Know, for Search"
}
问题的解决
  1. Elasticsearch 是使用 java 开发的,且 7.X 版本的 ES 需要 JDK 版本 1.8 以上,默认安装包带有 jdk 环境,如果系统配置 JAVA_HOME,那么使用系统默认的 JDK,如果没有配置使用自带的 JDK,一般建议使用系统配置的 JDK。
  2. 双击启动窗口闪退,通过路径访问追踪错误,如果是“空间不足”,请修改
    config/jvm.options 配置文件
# 设置 JVM 初始内存为 1G。此值可以设置与-Xmx 相同,以避免每次垃圾回收完成后 JVM 重新分配内存
# Xms represents the initial size of total heap space
# 设置 JVM 最大可用内存为 1G
# Xmx represents the maximum size of total heap space
-Xms1g
-Xmx1g

2. 数据格式

es和mysql对比

ES 里的 Index 可以看做一个库,而 Types 相当于表,Documents 则相当于表的行。
这里 Types 的概念已经被逐渐弱化,Elasticsearch 6.X 中,一个 index 下已经只能包含一个type,Elasticsearch 7.X 中, Type 的概念已经被删除了。

3. HTTP 操作

注意事项:

put操作是幂等性操作
post操作是非幂等性

创建索引

PUT 请求 :http://127.0.0.1:9200/shopping

查看所有索引

GET 请求 :http://127.0.0.1:9200/_cat/indices?v

返回参数说明

创建文档

POST 请求 :http://127.0.0.1:9200/shopping/_doc
此处发送请求的方式必须为 POST,不能是 PUT,否则会发生错误

如果想要自定义唯一性标识,需要在创建时指定:http://127.0.0.1:9200/shopping/_doc/1

查看文档

查看文档时,需要指明文档的唯一性标识,类似于 MySQL 中数据的主键查询

GET 请求 :http://127.0.0.1:9200/shopping/_doc/1

修改文档

POST 请求 :http://127.0.0.1:9200/shopping/_doc/1

修改字段

POST 请求 :http://127.0.0.1:9200/shopping/_update/1

删除文档

删除一个文档不会立即从磁盘上移除,它只是被标记成已删除(逻辑删除)
DELETE 请求 :http://127.0.0.1:9200/shopping/_doc/1

条件删除文档

POST 请求 :http://127.0.0.1:9200/shopping/_delete_by_query

查询语法
  1. 分页查询
GET test/doc/_search
{
  "query": {
    "match_phrase_prefix": {
      "name": "wang"
    }
  },
  "from": 0,
  "size": 1
  "_score":["title"]
}
  1. 多条件查询
GET test/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "wanggfei"
          }
        },{
          "match": {
            "age": 25
          }
        }
      ]
    }
  }
}
  1. 范围查询
    filter(条件过滤查询,过滤条件的范围用range表示gt表示大于、lt表示小于、gte表示大于等于、lte表示小于等于)
GET test/doc/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "name": "wangjifei"
          }
        }
      ],
      "filter": {
        "range": {
          "age": {
            "gte": 10,
            "lt": 27
          }
        }
      }
    }
  }
}
  1. 查询结果过滤
GET test3/doc/_search
{
  "query": {
    "match": {
      "name": "顾"
    }
  },
  "_source": ["name","age"]
}
  1. 全文检索
    使用match是把中文进行拆词,使用的是倒排索引,要想使用完全匹配就应该使用match_phrase
GET test1/doc/_search
{
  "query":{
    "match_phrase": {
      "title": "中国"
    }
  }
}
GET test1/doc/_search
{
  "query":{
    "match_phrase": {
      "title": {
        "query": "中国世界",
        "slop":2
      }
    }
  }
}

我们搜索中国和世界这两个指定词组时,但又不清楚两个词组之间有多少别的词间隔。那么在搜的时候就要留有一些余地。这时就要用到了slop了。相当于正则中的中国.*?世界。这个间隔默认为0

  1. 高亮显示
GET test3/doc/_search
{
  "query": {
    "match": {
      "name": "顾老二"
    }
  },
  "highlight": {
    "fields": {
      "name": {}
    }
  }
}
  1. 聚合操作
GET zhifou/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_avg": { //取的别名
      "avg": {  //分组操作
        "field": "age"  //需要分组的字段
      }
    }
  },
  "_source": ["name", "age"]  //显示想要的数据
}
GET zhifou/doc/_search
{
  "query": {
    "match": {
      "from": "gu"
    }
  },
  "aggs": {
    "my_avg": {
      "avg": {
        "field": "age"
      }
    }
  },
"size" :0 // 不显示明细数据了
}
GET zhifou/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {   //分组
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      }
    }
  }
}
GET zhifou/doc/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_group": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 15,
            "to": 20
          },
          {
            "from": 20,
            "to": 25
          },
          {
            "from": 25,
            "to": 30
          }
        ]
      },
      "aggs": {
        "my_avg": {
          "avg": {  //在aggs的自定义别名age_group中,使用range来做分组,field是以age为分组,分组使用ranges来做,from和to是范围,对每个小组内的数据做平均年龄处理
            "field": "age"
          }
        }
      }
    }
  }
}
  1. Mappings
    映射就是在创建索引的时候,有更多定制的内容,更加的贴合业务场景。
    用来定义一个文档及其包含的字段如何存储和索引的过程。
    index属性默认为true,如果该属性设置为false,那么,elasticsearch不会为该属性创建索引,也就是说无法当做主查询条件。

参考文档:https://www.cnblogs.com/xiohao/p/12970224.html
感觉es的查询语法挺多的,但是我们不需要去刻意的记忆,要用的时候直接去查文档即可,前提是你得知道有哪些查询语法,以及你想要的数据是什么

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容