接上篇,我们采用了领域驱动的开发方式,使用了充血模型,享受了他的好处,但是也不得不面对他带来的弊端。这个弊端在分布式的微服务架构下面又被放大。
事务一致性
事务一致性的问题在Monolithic下面不是大问题,在微服务下面却是很致命,我们回顾一下所谓的ACID原则
Atomicity – 原子性,改变数据状态要么是一起完成,要么一起失败
Consistency – 一致性,数据的状态是完整一致的
Isolation – 隔离线,即使有并发事务,互相之间也不影响
Durability – 持久性, 一旦事务提交,不可撤销
在单体服务和关系型数据库的时候,我们很容易通过数据库的特性去完成ACID。但是一旦你按照DDD拆分聚合根-微服务架构,他们的数据库就已经分离开了,你就要独立面对分布式事务,要在自己的代码里面满足ACID。
对于分布式事务,大家一般会想到以前的JTA标准,2PC两段式提交。我记得当年在Dubbo群里面,基本每周都会有人询问Dubbo啥时候支撑分布式事务。实际上根据分布式系统中CAP原则,当P(分区容忍)发生的时候,强行追求C(一致性),会导致(A)可用性、吞吐量下降,此时我们一般用最终一致性来保证我们系统的AP能力。当然不是说放弃C,而是在一般情况下CAP都能保证,在发生分区的情况下,我们可以通过最终一致性来保证数据一致。
例:
在电商业务的下订单冻结库存场景。需要根据库存情况确定订单是否成交。
假设你已经采用了分布式系统,这里订单模块和库存模块是两个服务,分别拥有自己的存储(关系型数据库),
在一个数据库的时候,一个事务就能搞定两张表的修改,但是微服务中,就没法这么做了。
在DDD理念中,一次事务只能改变一个聚合内部的状态,如果多个聚合之间需要状态一致,那么就要通过最终一致性。订单和库存明显是分属于两个不同的限界上下文的聚合,这里需要实现最终一致性,就需要使用事件驱动的架构。
事件驱动实现最终一致性
事件驱动架构在领域对象之间通过异步的消息来同步状态,有些消息也可以同时发布给多个服务,在消息引起了一个服务的同步后可能会引起另外消息,事件会扩散开。严格意义上的事件驱动是没有同步调用的。
例子:
在订单服务新增订单后,订单的状态是“已开启”,然后发布一个Order Created事件到消息队列上
库存服务在接收到Order Created 事件后,将库存表格中的某sku减掉可销售库存,增加订单占用库存,然后再发送一个Inventory Locked事件给消息队列
订单服务接收到Inventory Locked事件,将订单的状态改为“已确认”
有人问,如果库存不足,锁定不成功怎么办? 简单,库存服务发送一个Lock Fail事件, 订单服务接收后,把订单置为“已取消”。
好消息,我们可以不用锁!事件驱动有个很大的优势就是取消了并发,所有请求都是排队进来,这对我们实施充血模型有很大帮助,我们可以不需要自己来管理内存中的锁了。取消锁,队列处理效率很高,事件驱动可以用在高并发场景下,比如抢购。
是的,用户体验有改变,用了这个事件驱动,用户的体验有可能会有改变,比如原来同步架构的时候没有库存,就马上告诉你条件不满足无法下单,不会生成订单;但是改了事件机制,订单是立即生成的,很可能过了一会系统通知你订单被取消掉。 就像抢购“小米手机”一样,几十万人在排队,排了很久告诉你没货了,明天再来吧。如果希望用户立即得到结果,可以在前端想办法,在BFF(Backend For Frontend)使用CountDownLatch这样的锁把后端的异步转成前端同步,当然这样BFF消耗比较大。
没办法,产品经理不接受,产品经理说用户的体验必须是没有库存就不会生成订单,这个方案会不断的生成取消的订单,他不能接受,怎么办?那就在订单列表查询的时候,略过这些cancel状态的订单吧,也许需要一个额外的视图来做。我并不是一个理想主义者,解决当前的问题是我首先要考虑的,我们设计微服务的目的是本想是解决业务并发量。而现在面临的却是用户体验的问题,所以架构设计也是需要妥协的:( 但是至少分析完了,我知道我妥协在什么地方,为什么妥协,未来还有可能改变。
针对上面的技术我特意整理了一下,有很多技术不是靠几句话能讲清楚,所以干脆找朋友录制了一些视频,很多问题其实答案很简单,但是背后的思考和逻辑不简单,要做到知其然还要知其所以然。如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java进阶群:582505643,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家
多个领域多表Join查询
我个人认为聚合根这样的模式对修改状态是特别合适,但是对搜索数据的确是不方便,比如筛选出一批符合条件的订单这样的需求,本身聚合根对象不能承担批量的查询任务,因为这不是他的职责。那就必须依赖“领域服务(Domain Service)”这种设施。
当一个方法不便放在实体或者值对象上,使用领域服务便是最佳的解决方法,请确保领域服务是无状态的。
我们的查询任务往往很复杂,比如查询商品列表,要求按照上个月的销售额进行排序; 要按照商品的退货率排序等等。但是在微服务和DDD之后,我们的存储模型已经被拆离开,上述的查询都是要涉及订单、用户、商品多个领域的数据。如何搞? 此时我们要引入一个视图的概念。比如下面的,查询用户名下订单的操作,直接调用两个服务自己在内存中join效率无疑是很低的,再加上一些filter条件、分页,没法做了。于是我们将事件广播出去,由一个单独的视图服务来接收这些事件,并形成一个物化视图(materialized view),这些数据已经join过,处理过,放在一个单独的查询库中,等待查询,这是一个典型的以空间换时间的处理方式。
经过分析,除了简单的根据主键Find或者没有太多关联的List查询,我们大部分的查询任务可以放到单独的查询库中,这个查询库可以是关系数据库的ReadOnly库,也可以是NoSQL的数据库,实际上我们在项目中使用了ElasticSearch作为专门的查询视图,效果很不错
限界上下文(Bounded Context)和数据耦合
除了多领域join的问题,我们在业务中还会经常碰到一些场景,比如电商中的商品信息是基础信息,属于单独的BC,而其他BC,不管是营销服务、价格服务、购物车服务、订单服务都是需要引用这个商品信息的。但是需要的商品信息只是全部的一小部分而已,营销服务需要商品的id和名称、上下架状态;订单服务需要商品id、名称、目录、价格等等。这比起商品中心定义一个商品(商品id、名称、规格、规格值、详情等等)只是一个很小的子集。这说明不同的限界上下文的同样的术语,但是所指的概念不一样。 这样的问题映射到我们的实现中,每次在订单、营销模块中直接查询商品模块,肯定是不合适,因为
商品中心需要适配每个服务需要的数据,提供不同的接口
并发量必然很大
服务之间的耦合严重,一旦宕机、升级影响的范围很大。
特别是最后一条,严重限制了我们获得微服务提供的优势“松耦合、每个服务自己可以频繁升级不影响其他模块”。这就需要我们通过事件驱动方法,适当冗余一些数据到不同的BC去,把这种耦合拆解开。这种耦合有时候是通过Value Object嵌入到实体中的方式,在生成实体的时候就冗余,比如订单在生成的时候就冗余了商品的信息;有时候是通过额外的Value Object列表方式,营销中心冗余一部分相关的商品列表数据,并随时关注监听商品的上下级状态,同步替换掉本限界上下文的商品列表。
下图一个下单场景分析,在电商系统中,我们可以认为会员和商品是所有业务的基础数据,他们的变更应该是通过广播的方式发布到各个领域,每个领域保留自己需要的信息。
保证最终一致性
最终一致性成功依赖很多条件
依赖消息传递的可靠性,可能A系统变更了状态,消息发到B系统的时候丢失了,导致AB的状态不一致
依赖服务的可靠性,如果A系统变更了自己的状态,但是还没来得及发送消息就挂了。也会导致状态不一致
我记得JavaEE规范中的JMS中有针对这两种问题的处理要求,一个是JMS通过各种确认消息(Client Acknowledge等)来保证消息的投递可靠性,另外是JMS的消息投递操作可以加入到数据库的事务中-即没有发送消息,会引起数据库的回滚(没有查资料,不是很准确的描述,请专家指正)。不过现在符合JMS规范的MQ没几个,特别是保一致性需要降低性能,现在标榜高吞吐量的MQ都把问题抛给了我们自己的应用解决。所以这里介绍几个常见的方法,来提升最终一致性的效果。
使用本地事务
还是以上面的订单扣取信用的例子
订单服务开启本地事务,首先新增订单;
然后将Order Created事件插入一张专门Event表,事务提交;
有一个单独的定时任务线程,定期扫描Event表,扫出来需要发送的就丢到MQ,同时把Event设置为“已发送”。
方案的优势是使用了本地数据库的事务,如果Event没有插入成功,那么订单也不会被创建;线程扫描后把event置为已发送,也确保了消息不会被漏发(我们的目标是宁可重发,也不要漏发,因为Event处理会被设计为幂等)。
针对上面的技术我特意整理了一下,有很多技术不是靠几句话能讲清楚,所以干脆找朋友录制了一些视频,很多问题其实答案很简单,但是背后的思考和逻辑不简单,要做到知其然还要知其所以然。如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java进阶群:582505643,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家
缺点是需要单独处理Event发布在业务逻辑中,繁琐容易忘记;Event发送有些滞后;定时扫描性能消耗大,而且会产生数据库高水位隐患;
我们稍作改进,使用数据库特有的MySQL Binlog跟踪(阿里的Canal)或者Oracle的GoldenGate技术可以获得数据库的Event表的变更通知,这样就可以避免通过定时任务来扫描了
不过用了这些数据库日志的工具,会和具体的数据库实现(甚至是特定的版本)绑定,决策的时候请慎重。
使用Event Sourcing 事件溯源
事件溯源对我们来说是一个特别的思路,他并不持久化Entity对象,而是只把初始状态和每次变更的Event记录下来,并在内存中根据Event还原Entity对象的最新状态,具体实现很类似数据库的Redolog的实现,只是他把这种机制放到了应用层来。
虽然事件溯源有很多宣称的优势,引入这种技术要特别小心,首先他不一定适合大部分的业务场景,一旦变更很多的情况下,效率的确是个大问题;另外一些查询的问题也是困扰。
我承认我是标题党, 为什么要写这篇充满争议的文章?目前架构师这个职位特别火热,程序员的目标都是成为一个令人尊敬的架构师。但是我们真的理解架构师应该做些什么?很多人把架构师和框架师等同起来,认为研究框架多的才是架构师
下面说的情况请勿对号入座。
盲目的追新:
技术人员的喜好往往是什么技术流行就追什么技术。现在的技术发展快,前后端不断涌现各种框架,我们恨不得把这些框架都用在自己的项目里才行,要不然怎么好意思和别人打招呼啊。
我亲身经历,有个技术人员一定要把原来单元测试框架的xml初始数据改为json,他的原话是”json看的更舒服”,但是改完后,我们的单元测试反而难落地了,原因是原来的单元测试框架有个工具是可以将表中的数据自动生成xml的,而改成json后,我们必须手写json数据了。 他的喜好不包括给大家更好用的工具。
按技术站队,以结果反推:
很多人把手段当成了目的,成为了框架的信徒。用了Java开发,你的设计就一定是面向对象的?用了Spring boot就是微服务了吗?这些荒唐的事情却在技术圈不断发生,技术人员甚至会按照语言、框架形成不同的圈子,各种技术圈互相鄙视,互相踩,真相此时无法越辩越明,反而把技术方向带歪了。
技术要和实际场景结合
架构师也要深入了解掌握技术,但是更多的是了解技术的优劣和使用场景,而不是简单的生搬硬套。以现在流行的微服务架构来说,Netflix使用RESTful接口作为通讯,我们是不是要把公司的用了n年的基于TCP的RPC换成RESTful接口,因为根据Netflix的实践,RESTful可以更好的解耦、更强的伸缩性等优点,还能支持多种语言开发,互通性好。但是我们需要对RESTful彻底的理解清楚:
RESTful接口不简单是是http+json,Richardson成熟度模型中哪个层级更合适我们的内网API通讯,HATEOAS是否需要?
RESTful的核心是资源,如何在微服务中抽象资源概念,如何将基于过程的RPC调用平滑的迁移到RESTful上?
多语言开发是快,但是后续维护如何找到稳定的Go、Scala、xxx语言程序员来源?
以上的问题应该是架构师在考虑引入新技术的时候的重点,其中对技术优劣和架构思路是核心