本文同时发布在我的个人博客上:https://dragon_boy.gitee.io
消融效果
实现消融效果的原理是噪声纹理+透明度测试。我们使用噪声纹理采样的结果和某个控制消融程度的阈值比较,如果小于阈值,就使用clip函数把它对应的像素裁剪掉,这些部分对应了被烧毁的区域,而镂空区域边缘的烧焦效果则是将两种颜色混合,再用pow函数处理后,与原纹理颜色混合后的结果。
Shader代码如下:
Shader "Unlit/dissolve"
{
Properties
{
_BurnAmount ("Burn Amount", Range(0.0,1.0)) = 0.0
_LineWidth ("Burn Line Width", Range(0.0,0.2)) = 0.1
_MainTex ("Base Color", 2D) = "white" {}
_BumpMap ("Normal Map", 2D) = "bump" {}
_BurnFirstColor ("Burn First Color", Color) = (1,0,0,1)
_BurnSecondColor ("Burn Second Color", Color) = (1,0,0,1)
_BurnMap ("Burn Map", 2D) = "white" {}
}
SubShader
{
Tags { "RenderType"="Opaque" }
LOD 100
Pass
{
Tags {"LightMode" = "ForwardBase"}
Cull Off
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"
#pragma multi_compile_fwdbase
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
float3 normal : NORMAL;
float4 tangent : TANGENT;
};
struct v2f
{
float2 uvMainTex : TEXCOORD0;
float2 uvBumpTex : TEXCOORD1;
float2 uvBurnTex : TEXCOORD2;
float4 pos : SV_POSITION;
float3 lightDir : TEXCOORD3;
float3 worldPos : TEXCOORD4;
SHADOW_COORDS(5)
};
sampler2D _MainTex;
float4 _MainTex_ST;
sampler2D _BumpMap;
float4 _BumpMap_ST;
sampler2D _BurnMap;
float4 _BurnMap_ST;
float _BurnAmount;
float _LineWidth;
float4 _BurnFirstColor;
float4 _BurnSecondColor;
v2f vert (appdata v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.uvMainTex = TRANSFORM_TEX(v.uv, _MainTex);
o.uvBumpTex = TRANSFORM_TEX(v.uv, _BumpMap);
o.uvBurnTex = TRANSFORM_TEX(v.uv, _BurnMap);
TANGENT_SPACE_ROTATION;
o.lightDir = mul(rotation, ObjSpaceLightDir(v.vertex)).xyz;
o.worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
TRANSFER_SHADOW(o);
return o;
}
fixed4 frag (v2f i) : SV_Target
{
fixed3 burn = tex2D(_BurnMap, i.uvBurnTex).rgb;
clip(burn.r - _BurnAmount);
float3 tangentLightDir = normalize(i.lightDir);
float3 tangentNormal = UnpackNormal(tex2D(_BumpMap, i.uvBumpTex));
fixed3 albedo = tex2D(_MainTex, i.uvMainTex).rgb;
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.rgb * albedo;
fixed diffuse = _LightColor0.rgb * albedo * max(0,dot(tangentNormal, tangentLightDir));
fixed t = 1 - smoothstep(0.0,_LineWidth, burn.r - _BurnAmount);
fixed burnColor = lerp(_BurnFirstColor, _BurnSecondColor, t);
burnColor = pow(burnColor, 5);
UNITY_LIGHT_ATTENUATION(atten, i, i.worldPos);
fixed3 finalColor = lerp(ambient + diffuse * atten, burnColor, t * step(0.0001, _BurnAmount));
return fixed4(finalColor, 1);
}
ENDCG
}
Pass
{
Tags {"LightMode" = "ShadowCaster"}
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma multi_compile_shadowcaster
#include "UnityCG.cginc"
#include "Lighting.cginc"
#include "AutoLight.cginc"
struct v2f
{
V2F_SHADOW_CASTER;
float2 uvBurnMap : TEXCOORD0;
};
sampler2D _BurnMap;
float4 _BurnMap_ST;
float _BurnAmount;
v2f vert (appdata_base v)
{
v2f o ;
TRANSFER_SHADOW_CASTER_NORMALOFFSET(o);
o.uvBurnMap = TRANSFORM_TEX(v.texcoord, _BurnMap);
return o;
}
fixed4 frag(v2f i) : SV_Target
{
fixed3 burn = tex2D(_BurnMap, i.uvBurnMap).rgb;
clip(burn.r - _BurnAmount);
SHADOW_CASTER_FRAGMENT(i);
}
ENDCG
}
}
}
在第一个Pass的片元着色器中,我们先对噪声纹理进行采样,并将采样结果和用于控制消融的属性_BurnAmount
相减传递给clip
函数。结果小于0时,该像素会被剔除。在正常计算漫反射光照后,计算烧焦颜色。我们在宽度为_LineWidth
的范围内模拟一个烧焦的颜色变化,第一步使用smoothstep
函数来计算混合系数t,当t值为1,则像素在消融的边界,t为0,则像素为正常的模型颜色,中间的插值表示需要模拟烧焦效果。我们将两种火焰颜色插值混合,并用pow
函数让烧焦效果更明显。
之后的Pass我们用来投射阴影,因为使用了透明度测试的物体的阴影需要特别处理。大部分的代码和普通的阴影投射Pass一样,但在片元着色器中,我们将本应不产生阴影的消融区域剔除,再投射阴影。
效果如下:
水波效果
在模拟实时水面的过程中,我们往往也会使用噪声纹理。此时,噪声纹理会用作一个高度图,以不断修改水面的法线方向。为了模拟水不断流动的效果,我们会使用和时间相关的变量来对噪声纹理进行采样,当得到法线信息后,在进行正常的反射+折射计算,得到最后的水面波动效果。
这里我们使用一个由噪声纹理得到的法线贴图,实现一个包含菲涅尔反射的睡眠效果。
Shader代码如下:
Shader "Unlit/water"
{
Properties
{
_MainColor ("Main Color", Color) = (0,0.15,0.115,1)
_MainTex ("Texture", 2D) = "white" {}
_WaveMap ("Wave Map", 2D) = "bump" {}
_CubeMap ("Cube Map", Cube) = "_Skybox" {}
_WaveXSpeed ("Wave Horizontal Speed", Range(-0.1, 0.1)) = 0.01
_WaveYSpeed ("Wave Vertical Speed", Range(-0.1, 0.1)) = 0.01
_Distortion ("Distortion", Range(0,100)) = 10
}
SubShader
{
Tags { "Queue" = "Transparent" "RenderType" = "Opaque" }
GrabPass{"_RefractionTex"}
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float4 uv : TEXCOORD0;
float3 normal : NORMAL;
float4 tangent : TANGENT;
};
struct v2f
{
float4 uv : TEXCOORD0;
float4 pos : SV_POSITION;
float4 srcPos : TEXCOORD1;
float4 TtoW0: TEXCOORD2;
float4 TtoW1 : TEXCOORD3;
float4 TtoW2 : TEXCOORD4;
};
float4 _MainColor;
sampler2D _MainTex;
float4 _MainTex_ST;
sampler2D _WaveMap;
float4 _WaveMap_ST;
samplerCUBE _CubeMap;
fixed _WaveXSpeed;
fixed _WaveYSpeed;
float _Distortion;
sampler2D _RefractionTex;
float4 _RefractionTex_TexelSize;
v2f vert (appdata v)
{
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.srcPos = ComputeGrabScreenPos(o.pos);
o.uv.xy = TRANSFORM_TEX(v.uv, _MainTex);
o.uv.zw = TRANSFORM_TEX(v.uv, _WaveMap);
float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
fixed3 worldNormal = UnityObjectToWorldNormal(v.normal);
fixed3 worldTangent = UnityObjectToWorldDir(v.tangent.xyz);
fixed3 worldBitNormal = cross(worldNormal, worldTangent) * v.tangent.w;
o.TtoW0 = float4(worldTangent.x, worldBitNormal.x, worldNormal.x, worldPos.x);
o.TtoW1 = float4(worldTangent.y, worldBitNormal.y, worldNormal.y, worldPos.y);
o.TtoW2 = float4(worldTangent.z, worldBitNormal.z, worldNormal.z, worldPos.z);
return o;
}
fixed4 frag (v2f i) : SV_Target
{
float3 worldPos = float3(i.TtoW0.w, i.TtoW1.w, i.TtoW2.w);
float viewDir = normalize(UnityWorldSpaceViewDir(worldPos));
float2 speed = _Time.y * float2(_WaveXSpeed, _WaveYSpeed);
fixed3 bump1 = UnpackNormal(tex2D(_WaveMap, i.uv.zw + speed)).rgb;
fixed3 bump2 = UnpackNormal(tex2D(_WaveMap, i.uv.zw - speed)).rgb;
fixed3 bump = normalize(bump1 + bump2);
float2 offset = bump.xy * _Distortion * _RefractionTex_TexelSize.xy;
i.srcPos.xy = offset * i.srcPos.z + i.srcPos.xy;
fixed3 refrCol = tex2D(_RefractionTex, i.srcPos.xy / i.srcPos.w).rgb;
bump = normalize(half3(dot(i.TtoW0.xyz, bump),dot(i.TtoW1.xyz, bump),dot(i.TtoW2.xyz,bump)));
fixed4 texColor = tex2D(_MainTex, i.uv.xy + speed);
fixed3 reflDir = reflect(-viewDir, bump);
fixed reflCol = texCUBE(_CubeMap, reflDir).rgb * texColor.rgb * _MainColor.rgb;
fixed frenel = pow(1 - saturate(dot(viewDir, bump)), 4);
fixed3 finalColor = reflCol * frenel + refrCol * (1-frenel);
return fixed4(finalColor, 1.0);
}
ENDCG
}
}
}
我们先渲染环境得到立方体纹理。接着在Shader中先定义相应的渲染队列,并使用GrabPass来获取屏幕图像。接着在模拟水面的Pass中的顶点着色器中,我们通过ComputeGrabScreenPos
来得到对应被抓取屏幕图像的采样坐标,接着计算从切线空间变换到世界空间的矩阵。这里使用的方法时得到切线空间下的坐标轴在世界空间下的表示,再按列排列为一个变换矩阵。
在片元着色器中,我们先得到片元的视角方向,除此之外,我们使用内置的时间和定义的波纹速度属性计算波动速度,并将其作为偏移量两次采样噪声纹理,得到切线空间的法线值。之后使用切线空间的法线计算折射偏移,接着将法线转换到世界空间,正常计算菲涅尔效应。
全局雾效
这里我们使用噪声来实现雾效,实现脚本如下:
using UnityEngine;
using System.Collections;
public class FogWIthNoise : PostEffectsBase
{
public Shader fogShader;
private Material fogMaterial = null;
public Material material
{
get
{
fogMaterial = CheckShaderAndCreateMaterial(fogShader, fogMaterial);
return fogMaterial;
}
}
private Camera myCamera;
public Camera camera
{
get
{
if (myCamera == null)
{
myCamera = GetComponent<Camera>();
}
return myCamera;
}
}
private Transform myCameraTransform;
public Transform cameraTransform
{
get
{
if (myCameraTransform == null)
{
myCameraTransform = camera.transform;
}
return myCameraTransform;
}
}
[Range(0.1f, 3.0f)]
public float fogDensity = 1.0f;
public Color fogColor = Color.white;
public float fogStart = 0.0f;
public float fogEnd = 2.0f;
public Texture noiseTexture;
[Range(-0.5f, 0.5f)]
public float fogXSpeed = 0.1f;
[Range(-0.5f, 0.5f)]
public float fogYSpeed = 0.1f;
[Range(0.0f, 3.0f)]
public float noiseAmount = 1.0f;
void OnEnable()
{
GetComponent<Camera>().depthTextureMode |= DepthTextureMode.Depth;
}
void OnRenderImage(RenderTexture src, RenderTexture dest)
{
if (material != null)
{
Matrix4x4 frustumCorners = Matrix4x4.identity;
float fov = camera.fieldOfView;
float near = camera.nearClipPlane;
float aspect = camera.aspect;
float halfHeight = near * Mathf.Tan(fov * 0.5f * Mathf.Deg2Rad);
Vector3 toRight = cameraTransform.right * halfHeight * aspect;
Vector3 toTop = cameraTransform.up * halfHeight;
Vector3 topLeft = cameraTransform.forward * near + toTop - toRight;
float scale = topLeft.magnitude / near;
topLeft.Normalize();
topLeft *= scale;
Vector3 topRight = cameraTransform.forward * near + toRight + toTop;
topRight.Normalize();
topRight *= scale;
Vector3 bottomLeft = cameraTransform.forward * near - toTop - toRight;
bottomLeft.Normalize();
bottomLeft *= scale;
Vector3 bottomRight = cameraTransform.forward * near + toRight - toTop;
bottomRight.Normalize();
bottomRight *= scale;
frustumCorners.SetRow(0, bottomLeft);
frustumCorners.SetRow(1, bottomRight);
frustumCorners.SetRow(2, topRight);
frustumCorners.SetRow(3, topLeft);
material.SetMatrix("_FrustumCornersRay", frustumCorners);
material.SetFloat("_FogDensity", fogDensity);
material.SetColor("_FogColor", fogColor);
material.SetFloat("_FogStart", fogStart);
material.SetFloat("_FogEnd", fogEnd);
material.SetTexture("_NoiseTex", noiseTexture);
material.SetFloat("_FogXSpeed", fogXSpeed);
material.SetFloat("_FogYSpeed", fogYSpeed);
material.SetFloat("_NoiseAmount", noiseAmount);
Graphics.Blit(src, dest, material);
}
else
{
Graphics.Blit(src, dest);
}
}
}
上述代码和深度法线纹理那一章类似,只是多声明了一些相关变量。
Shader代码如下:
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'
Shader "Unlit/FogWithNoise"
{
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
_FogDensity ("Fog Density", Float) = 1.0
_FogColor ("Fog Color", Color) = (1, 1, 1, 1)
_FogStart ("Fog Start", Float) = 0.0
_FogEnd ("Fog End", Float) = 1.0
_NoiseTex ("Noise Texture", 2D) = "white" {}
_FogXSpeed ("Fog Horizontal Speed", Float) = 0.1
_FogYSpeed ("Fog Vertical Speed", Float) = 0.1
_NoiseAmount ("Noise Amount", Float) = 1
}
SubShader {
CGINCLUDE
#include "UnityCG.cginc"
float4x4 _FrustumCornersRay;
sampler2D _MainTex;
half4 _MainTex_TexelSize;
sampler2D _CameraDepthTexture;
half _FogDensity;
fixed4 _FogColor;
float _FogStart;
float _FogEnd;
sampler2D _NoiseTex;
half _FogXSpeed;
half _FogYSpeed;
half _NoiseAmount;
struct v2f {
float4 pos : SV_POSITION;
float2 uv : TEXCOORD0;
float2 uv_depth : TEXCOORD1;
float4 interpolatedRay : TEXCOORD2;
};
v2f vert(appdata_img v) {
v2f o;
o.pos = UnityObjectToClipPos(v.vertex);
o.uv = v.texcoord;
o.uv_depth = v.texcoord;
#if UNITY_UV_STARTS_AT_TOP
if (_MainTex_TexelSize.y < 0)
o.uv_depth.y = 1 - o.uv_depth.y;
#endif
int index = 0;
if (v.texcoord.x < 0.5 && v.texcoord.y < 0.5) {
index = 0;
} else if (v.texcoord.x > 0.5 && v.texcoord.y < 0.5) {
index = 1;
} else if (v.texcoord.x > 0.5 && v.texcoord.y > 0.5) {
index = 2;
} else {
index = 3;
}
#if UNITY_UV_STARTS_AT_TOP
if (_MainTex_TexelSize.y < 0)
index = 3 - index;
#endif
o.interpolatedRay = _FrustumCornersRay[index];
return o;
}
fixed4 frag(v2f i) : SV_Target {
float linearDepth = LinearEyeDepth(SAMPLE_DEPTH_TEXTURE(_CameraDepthTexture, i.uv_depth));
float3 worldPos = _WorldSpaceCameraPos + linearDepth * i.interpolatedRay.xyz;
float2 speed = _Time.y * float2(_FogXSpeed, _FogYSpeed);
float noise = (tex2D(_NoiseTex, i.uv + speed).r - 0.5) * _NoiseAmount;
float fogDensity = (_FogEnd - worldPos.y) / (_FogEnd - _FogStart);
fogDensity = saturate(fogDensity * _FogDensity * (1 + noise));
fixed4 finalColor = tex2D(_MainTex, i.uv);
finalColor.rgb = lerp(finalColor.rgb, _FogColor.rgb, fogDensity);
return finalColor;
}
ENDCG
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
ENDCG
}
}
FallBack Off
}
在片元着色器中,我们通过定义的X、Y轴的速度来计算偏移量来采样噪声纹理,接着使用基于高度的雾效公式得出密度,并使用这个密度对主纹理颜色和雾效颜色插值。