Understanding 'Sufficiency' and 'Necessity'

* Note: This is my understanding of some idea in Coursera Course Intro to Mathematical Thinking. Initially I drew these pics just for myself, but someone in discussion forum ask for a clear explanation, and the forum is not embedded with good markdown editor. So I put it here for hyper link reference.
* Note2: For better user experience, you may duplicate the window, one for showing the pics, the other for reading the text.

Two weird imply statement


The six statements all mean '\phi implies \psi',
four on the left seems quite reasonable:

  • If \phi, then \psi
  • \phi is sufficient for \psi
  • \psi if \phi
  • \psi whenever \phi

But the rest two on the right may be quite counterintuitive:

  • \phi only if \psi
  • \psi is necessary for \phi

Here are two responding example to help you get the idea:

  • 'Attend Tour de France' only if 'can ride a bike'.
  • 'Can ride a bike' is necessary for 'attend Tour de France'.

They both mean the same thing: If 'attend Tour de France' happen, 'can ride a bike must happen'.

Apart from rely on intuitive example, is there some more universal thinking approach that help us digest the idea of 'sufficient and necessity' well?

Here's how I take it.

Sufficiency

(Don't worry about the handwriting, I've put text below the pic.)


    1. \phi is loosely attached to several buttons(or light bulbs if you like), one of them is called \psi.
    1. When you light up \phi, some arbitrary button will shine.
    1. No matter which set will shine, you find out that \psi will always be one of it.
    1. So the relationship between \phi and \psi is bound tight.
    1. When \phi happen, \psi is definitely going to happen. So we say '\phi is sufficient for \psi'.

The idea of 'sufficiency' is quite straightforward, however when we look at necessity, it's a slightly more complicated story.

Necessity

    1. Now \phi and \psi happily live ever after...Wait, that's not the end of the story. ( Notice the 'time flow' arrow below the pic)
    1. Going backwards alongside the time flow, there's some other buttons that will light \phi up.
    1. It can be the upper one, the middle one, and of course the lower one. None of them can be called 'being necessary for \phi', because there are three of them. For each one, when it don't roll up the sleeves, some other guy can light up \phi. There's no necessity.
    1. There's no one necessary for \phi until someone took part in...Let's name it 'GUY'.
    1. Now this 'GUY' can be called 'necessary for \phi', because it monopolies all the roads lead to \phi, it's a must-go-through.
    1. If \phi is lit up, no matter what, this 'GUY' was lit up beforehand.
    1. BTW, 'GUY' might have some subsidiaries other than \phi. 13) So, when 'GUY' lights up, it's quite arbitrary whether \phi will light up.
    1. On the contrary, whenever \phi lights up, 'GUY' must light up, since it's the only access to \phi from left to right.
    1. When 'GUY' happen to be \psi, 16) this relationship can be simplified to :
      \psi <==== \phi ====> \psi
      ( Of all the connection, only these two strong arrow are 100% bound. )
    1. '\phi is sufficient for \psi':
      \phi ====> \psi
      When \phi lights up, \psi lights up.
    1. '\psi is necessary for \phi':
      \psi ====> \phi
      When \phi lights up, \psi must have been lighten up, because there's on other way to get \phi lit.
    1. (17) and (18) basically say the same thing: ** * \phi implies \psi * **, but in two different angles: ** sufficiency ** and ** necessity **.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容

  • 深夜了,站在阳台上听歌,抽几手老烟。歌曲很好听,不自觉地跟着吟唱:“我喜欢你 是我独家的记忆”,一遍又一遍。今夜它...
    韦雄阅读 517评论 0 3
  • 05 行走的足迹 我一直就有一个梦想,就是有一天能把自己想去的地方都走个遍。 (1) 我是一个向往自由的射手座,不...
    穆念青阅读 178评论 1 1
  • 4,3没人医 王琳赶到医院照顾徐春红,陈墨在两个小时后就坐上了前往长沙的航班。下飞机后,又坐车颠簸了七八个小时才到...
    吴桐wutong阅读 410评论 0 0
  • 本文参考了http://www.jianshu.com/p/9b720efe3779和https://onevca...
    smile小芳阅读 1,629评论 0 3