111.周内的每天销售情况
写一个SQL语句,报告 周内每天 每个商品类别下订购了多少单位
表:Orders
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| order_id | int |
| customer_id | int |
| order_date | date |
| item_id | varchar |
| quantity | int |
+---------------+---------+
(order_id, item_id) 是该表主键
该表包含了订单信息
order_date 是id为 item_id 的商品被id为 customer_id 的消费者订购的日期.
表:Items
+---------------------+---------+
| Column Name | Type |
+---------------------+---------+
| item_id | varchar |
| item_name | varchar |
| item_category | varchar |
+---------------------+---------+
item_id 是该表主键
item_name 是商品的名字
item_category 是商品的类别
你是企业主,想要获得分类商品和周内每天的销售报告。
写一个SQL语句,报告 周内每天 每个商品类别下订购了多少单位。
返回结果表单 按商品类别排序 。
查询结果格式如下例所示:
Orders 表:
+------------+--------------+-------------+--------------+-------------+
| order_id | customer_id | order_date | item_id | quantity |
+------------+--------------+-------------+--------------+-------------+
| 1 | 1 | 2020-06-01 | 1 | 10 |
| 2 | 1 | 2020-06-08 | 2 | 10 |
| 3 | 2 | 2020-06-02 | 1 | 5 |
| 4 | 3 | 2020-06-03 | 3 | 5 |
| 5 | 4 | 2020-06-04 | 4 | 1 |
| 6 | 4 | 2020-06-05 | 5 | 5 |
| 7 | 5 | 2020-06-05 | 1 | 10 |
| 8 | 5 | 2020-06-14 | 4 | 5 |
| 9 | 5 | 2020-06-21 | 3 | 5 |
+------------+--------------+-------------+--------------+-------------+
Items 表:
+------------+----------------+---------------+
| item_id | item_name | item_category |
+------------+----------------+---------------+
| 1 | LC Alg. Book | Book |
| 2 | LC DB. Book | Book |
| 3 | LC SmarthPhone | Phone |
| 4 | LC Phone 2020 | Phone |
| 5 | LC SmartGlass | Glasses |
| 6 | LC T-Shirt XL | T-Shirt |
+------------+----------------+---------------+
Result 表:
+------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| Category | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday |
+------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| Book | 20 | 5 | 0 | 0 | 10 | 0 | 0 |
| Glasses | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| Phone | 0 | 0 | 5 | 1 | 0 | 0 | 10 |
| T-Shirt | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
+------------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
在周一(2020-06-01, 2020-06-08),Book分类(ids: 1, 2)下,总共销售了20个单位(10 + 10)
在周二(2020-06-02),Book分类(ids: 1, 2)下,总共销售了5个单位
在周三(2020-06-03),Phone分类(ids: 3, 4)下,总共销售了5个单位
在周四(2020-06-04),Phone分类(ids: 3, 4)下,总共销售了1个单位
在周五(2020-06-05),Book分类(ids: 1, 2)下,总共销售了10个单位,Glasses分类(ids: 5)下,总共销售了5个单位
在周六, 没有商品销售
在周天(2020-06-14, 2020-06-21),Phone分类(ids: 3, 4)下,总共销售了10个单位(5 + 5)
没有销售 T-Shirt 类别的商品
--简单题,注意怎么获取星期几,以及星期天是星期的第一天
//weekday dayname的使用
select
item_category Category,
ifnull(sum(if(date_format(order_date,"%w")=1,quantity ,0)),0) Monday ,
ifnull(sum(if(date_format(order_date,"%w")=2,quantity ,0)),0) Tuesday ,
ifnull(sum(if(date_format(order_date,"%w")=3,quantity ,0)),0) Wednesday ,
ifnull(sum(if(date_format(order_date,"%w")=4,quantity ,0)),0) Thursday ,
ifnull(sum(if(date_format(order_date,"%w")=5,quantity ,0)),0) Friday ,
ifnull(sum(if(date_format(order_date,"%w")=6,quantity ,0)),0) Saturday ,
ifnull(sum(if(date_format(order_date,"%w")=0,quantity ,0)),0) Sunday
from
Items t1 left join Orders t2 on t1.item_id = t2.item_id
group by item_category
order by item_category
112.按日期分组销售产品(group_concat)
编写一个 SQL 查询来查找每个日期、销售的不同产品的数量及其名称。
每个日期的销售产品名称应按词典序排列。
返回按 sell_date 排序的结果表。
表 Activities:
+-------------+---------+
| 列名 | 类型 |
+-------------+---------+
| sell_date | date |
| product | varchar |
+-------------+---------+
此表没有主键,它可能包含重复项。
此表的每一行都包含产品名称和在市场上销售的日期。
编写一个 SQL 查询来查找每个日期、销售的不同产品的数量及其名称。
每个日期的销售产品名称应按词典序排列。
返回按 sell_date 排序的结果表。
查询结果格式如下例所示。
Activities 表:
+------------+-------------+
| sell_date | product |
+------------+-------------+
| 2020-05-30 | Headphone |
| 2020-06-01 | Pencil |
| 2020-06-02 | Mask |
| 2020-05-30 | Basketball |
| 2020-06-01 | Bible |
| 2020-06-02 | Mask |
| 2020-05-30 | T-Shirt |
+------------+-------------+
Result 表:
+------------+----------+------------------------------+
| sell_date | num_sold | products |
+------------+----------+------------------------------+
| 2020-05-30 | 3 | Basketball,Headphone,T-shirt |
| 2020-06-01 | 2 | Bible,Pencil |
| 2020-06-02 | 1 | Mask |
+------------+----------+------------------------------+
对于2020-05-30,出售的物品是 (Headphone, Basketball, T-shirt),按词典序排列,并用逗号 ',' 分隔。
对于2020-06-01,出售的物品是 (Pencil, Bible),按词典序排列,并用逗号分隔。
对于2020-06-02,出售的物品是 (Mask),只需返回该物品名。
--难题,没用过group_concat函数,注意取别名类似于hive中的炸裂函数
select
sell_date,count(distinct product) num_sold,
group_concat(distinct product separator ",") products
from
(
select
sell_date,product
from
Activities a
order by sell_date,product
) t1
group by sell_date
order by sell_date
--注意也可以在函数中直接排序
select sell_date, count(distinct product) num_sold,
group_concat(distinct product order by product asc separator ',') as products
from activities
group by sell_date
113.上月播放的儿童适宜电影
写一个 SQL 语句, 报告在 2020 年 6 月份播放的儿童适宜电影的去重电影名
表: TVProgram
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| program_date | date |
| content_id | int |
| channel | varchar |
+---------------+---------+
(program_date, content_id) 是该表主键.
该表包含电视上的节目信息.
content_id 是电视一些频道上的节目的 id.
表: Content
+------------------+---------+
| Column Name | Type |
+------------------+---------+
| content_id | varchar |
| title | varchar |
| Kids_content | enum |
| content_type | varchar |
+------------------+---------+
content_id 是该表主键.
Kids_content 是枚举类型, 取值为('Y', 'N'), 其中:
'Y' 表示儿童适宜内容, 而'N'表示儿童不宜内容.
content_type 表示内容的类型, 比如电影, 电视剧等.
写一个 SQL 语句, 报告在 2020 年 6 月份播放的儿童适宜电影的去重电影名.
返回的结果表单没有顺序要求.
查询结果的格式如下例所示.
TVProgram 表:
+--------------------+--------------+-------------+
| program_date | content_id | channel |
+--------------------+--------------+-------------+
| 2020-06-10 08:00 | 1 | LC-Channel |
| 2020-05-11 12:00 | 2 | LC-Channel |
| 2020-05-12 12:00 | 3 | LC-Channel |
| 2020-05-13 14:00 | 4 | Disney Ch |
| 2020-06-18 14:00 | 4 | Disney Ch |
| 2020-07-15 16:00 | 5 | Disney Ch |
+--------------------+--------------+-------------+
Content 表:
+------------+----------------+---------------+---------------+
| content_id | title | Kids_content | content_type |
+------------+----------------+---------------+---------------+
| 1 | Leetcode Movie | N | Movies |
| 2 | Alg. for Kids | Y | Series |
| 3 | Database Sols | N | Series |
| 4 | Aladdin | Y | Movies |
| 5 | Cinderella | Y | Movies |
+------------+----------------+---------------+---------------+
Result 表:
+--------------+
| title |
+--------------+
| Aladdin |
+--------------+
"Leetcode Movie" 是儿童不宜的电影.
"Alg. for Kids" 不是电影.
"Database Sols" 不是电影
"Alladin" 是电影, 儿童适宜, 并且在 2020 年 6 月份播放.
"Cinderella" 不在 2020 年 6 月份播放
--简单题,注意使用like要加%的使用
select
distinct title
from
(
select
content_id
from
TVProgram t1
where program_date like "2020-06%"
) t1
join
(
select
content_id, title
from
Content
where content_type = "Movies" and Kids_content = "Y"
) t2 on t1.content_id = t2.content_id
select title from content
where kids_content = "Y" and content_type = "Movies"
and content_id in
(select content_id from tvprogram where program_date like "2020-06%")
注意查询枚举类型的效率问题
114.可以放心投资的国家(总体平均值)
一家电信公司想要投资新的国家. 该公司想要投资的国家是: 该国的平均通话时长要严格地大于全球平均通话时长
写一段 SQL, 找到所有该公司可以投资的国家
表 Person:
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| id | int |
| name | varchar |
| phone_number | varchar |
+----------------+---------+
id 是该表主键.
该表每一行包含一个人的名字和电话号码.
电话号码的格式是:'xxx-yyyyyyy', 其中xxx是国家码(3个字符), yyyyyyy是电话号码(7个字符), x和y都表示数字. 同时, 国家码和电话号码都可以包含前导0.
表 Country:
+----------------+---------+
| Column Name | Type |
+----------------+---------+
| name | varchar |
| country_code | varchar |
+----------------+---------+
country_code是该表主键.
该表每一行包含国家名和国家码. country_code的格式是'xxx', x是数字.
表 Calls:
+-------------+------+
| Column Name | Type |
+-------------+------+
| caller_id | int |
| callee_id | int |
| duration | int |
+-------------+------+
该表无主键, 可能包含重复行.
每一行包含呼叫方id, 被呼叫方id和以分钟为单位的通话时长. caller_id != callee_id
一家电信公司想要投资新的国家. 该公司想要投资的国家是: 该国的平均通话时长要严格地大于全球平均通话时长.
写一段 SQL, 找到所有该公司可以投资的国家.
返回的结果表没有顺序要求.
查询的结果格式如下例所示.
Person 表:
+----+----------+--------------+
| id | name | phone_number |
+----+----------+--------------+
| 3 | Jonathan | 051-1234567 |
| 12 | Elvis | 051-7654321 |
| 1 | Moncef | 212-1234567 |
| 2 | Maroua | 212-6523651 |
| 7 | Meir | 972-1234567 |
| 9 | Rachel | 972-0011100 |
+----+----------+--------------+
Country 表:
+----------+--------------+
| name | country_code |
+----------+--------------+
| Peru | 051 |
| Israel | 972 |
| Morocco | 212 |
| Germany | 049 |
| Ethiopia | 251 |
+----------+--------------+
Calls 表:
+-----------+-----------+----------+
| caller_id | callee_id | duration |
+-----------+-----------+----------+
| 1 | 9 | 33 |
| 2 | 9 | 4 |
| 1 | 2 | 59 |
| 3 | 12 | 102 |
| 3 | 12 | 330 |
| 12 | 3 | 5 |
| 7 | 9 | 13 |
| 7 | 1 | 3 |
| 9 | 7 | 1 |
| 1 | 7 | 7 |
+-----------+-----------+----------+
Result 表:
+----------+
| country |
+----------+
| Peru |
+----------+
国家Peru的平均通话时长是 (102 + 102 + 330 + 330 + 5 + 5) / 6 = 145.666667
国家Israel的平均通话时长是 (33 + 4 + 13 + 13 + 3 + 1 + 1 + 7) / 8 = 9.37500
国家Morocco的平均通话时长是 (33 + 4 + 59 + 59 + 3 + 7) / 6 = 27.5000
全球平均通话时长 = (2 * (33 + 3 + 59 + 102 + 330 + 5 + 13 + 3 + 1 + 7)) / 20 = 55.70000
所以, Peru是唯一的平均通话时长大于全球平均通话时长的国家, 也是唯一的推荐投资的国家.
--简单题,我写的麻烦,看了下评论区事实上求总体的平均值只需要对表avg即可,不需要union all.....
with x as (
select
name,id
from
Country t1
left join
(
select
id,left(phone_number,3) as country_code
from
Person
) t2 on t1.country_code = t2.country_code )
select
distinct name country
from
(
select
name,
avg(duration) over(partition by name ) as avg_1,
avg(duration) over() as avg_2
from
(
select
name,duration
from
Calls
join x on Calls.caller_id = x.id
union all
(
select
name,duration
from
Calls
join x on Calls.callee_id = x.id
)
) s2
) s3
where avg_1 > avg_2
with cte as (
select ct.name, avg(cl.duration) as avg_country
from person a
join country ct on left(a.phone_number, 3)=ct.country_code
join calls cl on a.id=cl.caller_id or a.id=cl.callee_id
group by ct.name)
select name as country
from cte
where avg_country > (select avg(duration) from calls)
注意在join中使用 or ....这样就不需要union all了...
115.消费者下单频率
写一个 SQL 语句, 报告消费者的 id 和名字, 其中消费者在 2020 年 6 月和 7 月, 每月至少花费了$100.
表: Customers
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| name | varchar |
| country | varchar |
+---------------+---------+
customer_id 是该表主键.
该表包含公司消费者的信息.
表: Product
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| product_id | int |
| description | varchar |
| price | int |
+---------------+---------+
product_id 是该表主键.
该表包含公司产品的信息.
price 是本产品的花销.
表: Orders
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| order_id | int |
| customer_id | int |
| product_id | int |
| order_date | date |
| quantity | int |
+---------------+---------+
order_id 是该表主键.
该表包含消费者下单的信息.
customer_id 是买了数量为"quantity", id为"product_id"产品的消费者的 id.
Order_date 是订单发货的日期, 格式为('YYYY-MM-DD').
写一个 SQL 语句, 报告消费者的 id 和名字, 其中消费者在 2020 年 6 月和 7 月, 每月至少花费了$100.
结果表无顺序要求.
查询结果格式如下例所示.
Customers
+--------------+-----------+-------------+
| customer_id | name | country |
+--------------+-----------+-------------+
| 1 | Winston | USA |
| 2 | Jonathan | Peru |
| 3 | Moustafa | Egypt |
+--------------+-----------+-------------+
Product
+--------------+-------------+-------------+
| product_id | description | price |
+--------------+-------------+-------------+
| 10 | LC Phone | 300 |
| 20 | LC T-Shirt | 10 |
| 30 | LC Book | 45 |
| 40 | LC Keychain | 2 |
+--------------+-------------+-------------+
Orders
+--------------+-------------+-------------+-------------+-----------+
| order_id | customer_id | product_id | order_date | quantity |
+--------------+-------------+-------------+-------------+-----------+
| 1 | 1 | 10 | 2020-06-10 | 1 |
| 2 | 1 | 20 | 2020-07-01 | 1 |
| 3 | 1 | 30 | 2020-07-08 | 2 |
| 4 | 2 | 10 | 2020-06-15 | 2 |
| 5 | 2 | 40 | 2020-07-01 | 10 |
| 6 | 3 | 20 | 2020-06-24 | 2 |
| 7 | 3 | 30 | 2020-06-25 | 2 |
| 9 | 3 | 30 | 2020-05-08 | 3 |
+--------------+-------------+-------------+-------------+-----------+
Result 表:
+--------------+------------+
| customer_id | name |
+--------------+------------+
| 1 | Winston |
+--------------+------------+
Winston 在2020年6月花费了$300(300 * 1), 在7月花费了$100(10 * 1 + 45 * 2).
Jonathan 在2020年6月花费了$600(300 * 2), 在7月花费了$20(2 * 10).
Moustafa 在2020年6月花费了$110 (10 * 2 + 45 * 2), 在7月花费了$0
--简单题,在having判断之前先进行过滤是否效率会快一点?发现速度反而慢了.....
select
t1.customer_id,name
from
Customers t1 join Orders t2 on t1.customer_id = t2.customer_id
join Product t3 on t2.product_id = t3.product_id
//where month(order_date) = 6 or month(order_date) = 7
group by t1.customer_id
having sum(if(left(order_date,7)="2020-06",price * quantity ,0 )) >= 100
and
sum(if(left(order_date,7)="2020-07",price * quantity ,0 )) >= 100
116.查找拥有有效邮箱的用户(正则匹配)
写一条 SQL 语句,查询拥有有效邮箱的用户
有效的邮箱包含符合下列条件的前缀名和域名:
前缀名是包含字母(大写或小写)、数字、下划线 '_'、句点 '.' 和/或横杠 '-' 的字符串。前缀名必须以字母开头。
域名是 '@leetcode.com'
用户表: Users
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| name | varchar |
| mail | varchar |
+---------------+---------+
user_id (用户 ID)是该表的主键。
这个表包含用户在某网站上注册的信息。有些邮箱是无效的。
写一条 SQL 语句,查询拥有有效邮箱的用户。
有效的邮箱包含符合下列条件的前缀名和域名:
前缀名是包含字母(大写或小写)、数字、下划线 '_'、句点 '.' 和/或横杠 '-' 的字符串。前缀名必须以字母开头。
域名是 '@leetcode.com' 。
按任意顺序返回结果表。
查询格式如下所示:
Users
+---------+-----------+-------------------------+
| user_id | name | mail |
+---------+-----------+-------------------------+
| 1 | Winston | winston@leetcode.com |
| 2 | Jonathan | jonathanisgreat |
| 3 | Annabelle | bella-@leetcode.com |
| 4 | Sally | sally.come@leetcode.com |
| 5 | Marwan | quarz#2020@leetcode.com |
| 6 | David | david69@gmail.com |
| 7 | Shapiro | .shapo@leetcode.com |
+---------+-----------+-------------------------+
结果表:
+---------+-----------+-------------------------+
| user_id | name | mail |
+---------+-----------+-------------------------+
| 1 | Winston | winston@leetcode.com |
| 3 | Annabelle | bella-@leetcode.com |
| 4 | Sally | sally.come@leetcode.com |
+---------+-----------+-------------------------+
2 号用户的邮箱没有域名。
5 号用户的邮箱包含非法字符 #。
6 号用户的邮箱的域名不是 leetcode。
7 号用户的邮箱以句点(.)开头。
--正则匹配,非常讨厌老忘记符号的含义....
select *
from users
where mail regexp '^[a-zA-Z]+[a-zA-Z0-9_\\./\\-]*@leetcode\\.com$'
117.患某疾病的患者
写一条 SQL 语句,查询患有 I 类糖尿病的患者 ID (patient_id)、患者姓名(patient_name)以及其患有的所有疾病代码(conditions)。I 类糖尿病的代码总是包含前缀 DIAB1 。
患者信息表: Patients
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| patient_id | int |
| patient_name | varchar |
| conditions | varchar |
+--------------+---------+
patient_id (患者 ID)是该表的主键。
'conditions' (疾病)包含 0 个或以上的疾病代码,以空格分隔。
这个表包含医院中患者的信息。
写一条 SQL 语句,查询患有 I 类糖尿病的患者 ID (patient_id)、患者姓名(patient_name)以及其患有的所有疾病代码(conditions)。I 类糖尿病的代码总是包含前缀 DIAB1 。
按任意顺序返回结果表。
查询结果格式如下示例所示:
Patients
+------------+--------------+--------------+
| patient_id | patient_name | conditions |
+------------+--------------+--------------+
| 1 | Daniel | YFEV COUGH |
| 2 | Alice | |
| 3 | Bob | DIAB100 MYOP |
| 4 | George | ACNE DIAB100 |
| 5 | Alain | DIAB201 |
+------------+--------------+--------------+
结果表:
+------------+--------------+--------------+
| patient_id | patient_name | conditions |
+------------+--------------+--------------+
| 3 | Bob | DIAB100 MYOP |
| 4 | George | ACNE DIAB100 |
+------------+--------------+--------------+
Bob 和 George 都患有代码以 DIAB1 开头的疾病
--like用法,有一个通过不了限制一下....
SELECT
patient_id,
patient_name,
conditions
FROM Patients
WHERE conditions LIKE '%DIAB1%' AND conditions NOT LIKE 'SADIAB100'
--正确的写法
select * from Patients where conditions REGEXP '^DIAB1|\\sDIAB1'
select * from patients where conditions like "DIAB1%" or conditions like "% DIAB1%"
118.最近的三笔订单
写一个 SQL 语句,找到每个用户的最近三笔订单。如果用户的订单少于 3 笔,则返回他的全部订单。
表:Customers
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| name | varchar |
+---------------+---------+
customer_id 是该表主键
该表包含消费者的信息
表:Orders
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| order_id | int |
| order_date | date |
| customer_id | int |
| cost | int |
+---------------+---------+
order_id 是该表主键
该表包含id为customer_id的消费者的订单信息
每一个消费者 每天一笔订单
写一个 SQL 语句,找到每个用户的最近三笔订单。如果用户的订单少于 3 笔,则返回他的全部订单。
返回的结果按照 customer_name 升序排列。如果排名有相同,则继续按照 customer_id 升序排列。如果排名还有相同,则继续按照 order_date 降序排列。
查询结果格式如下例所示:
Customers
+-------------+-----------+
| customer_id | name |
+-------------+-----------+
| 1 | Winston |
| 2 | Jonathan |
| 3 | Annabelle |
| 4 | Marwan |
| 5 | Khaled |
+-------------+-----------+
Orders
+----------+------------+-------------+------+
| order_id | order_date | customer_id | cost |
+----------+------------+-------------+------+
| 1 | 2020-07-31 | 1 | 30 |
| 2 | 2020-07-30 | 2 | 40 |
| 3 | 2020-07-31 | 3 | 70 |
| 4 | 2020-07-29 | 4 | 100 |
| 5 | 2020-06-10 | 1 | 1010 |
| 6 | 2020-08-01 | 2 | 102 |
| 7 | 2020-08-01 | 3 | 111 |
| 8 | 2020-08-03 | 1 | 99 |
| 9 | 2020-08-07 | 2 | 32 |
| 10 | 2020-07-15 | 1 | 2 |
+----------+------------+-------------+------+
Result table:
+---------------+-------------+----------+------------+
| customer_name | customer_id | order_id | order_date |
+---------------+-------------+----------+------------+
| Annabelle | 3 | 7 | 2020-08-01 |
| Annabelle | 3 | 3 | 2020-07-31 |
| Jonathan | 2 | 9 | 2020-08-07 |
| Jonathan | 2 | 6 | 2020-08-01 |
| Jonathan | 2 | 2 | 2020-07-30 |
| Marwan | 4 | 4 | 2020-07-29 |
| Winston | 1 | 8 | 2020-08-03 |
| Winston | 1 | 1 | 2020-07-31 |
| Winston | 1 | 10 | 2020-07-15 |
+---------------+-------------+----------+------------+
Winston 有 4 笔订单, 排除了 "2020-06-10" 的订单, 因为它是最老的订单。
Annabelle 只有 2 笔订单, 全部返回。
Jonathan 恰好有 3 笔订单。
Marwan 只有 1 笔订单。
结果表我们按照 customer_name 升序排列,customer_id 升序排列,order_date 降序排列。
--简单题,窗口写法
--注意不能以name为分组,因为名字会重复...要以id.....
select
name customer_name,
customer_id,
order_id,
order_date
from
(
select
name,
t1.customer_id,
order_id,
order_date,
dense_rank() over(partition by t1.customer_id order by order_date desc ) as rn
from Customers t1 join Orders t2 on t1.customer_id = t2.customer_id
) t1
where rn <=3
order by customer_name ,customer_id,order_date desc
SELECT c.name customer_name,o2.customer_id,o2.order_id,o2.order_date
FROM orders o1,orders o2,Customers c
WHERE o1.customer_id=o2.customer_id AND c.customer_id=o2.customer_id
GROUP BY c.name,o2.order_id,o2.customer_id,o2.order_date
HAVING SUM(o1.order_date>=o2.order_date)<=3
ORDER BY c.name,o2.customer_id,o2.order_date desc
119.产品名称格式修复(内容处理函数)
写一个 SQL 语句报告每个月的销售情况:
product_name 是小写字母且不包含前后空格
sale_date 格式为 ('YYYY-MM')
total 是产品在本月销售的次数
表:Sales
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| sale_id | int |
| product_name | varchar |
| sale_date | date |
+--------------+---------+
sale_id 是该表主键
该表的每一行包含了产品的名称及其销售日期
因为在 2000 年该表是手工填写的,product_name 可能包含前后空格,而且包含大小写。
写一个 SQL 语句报告每个月的销售情况:
product_name 是小写字母且不包含前后空格
sale_date 格式为 ('YYYY-MM')
total 是产品在本月销售的次数
返回结果以 product_name 升序 排列,如果有排名相同,再以 sale_date 升序 排列。
查询结果格式如下所示:
Sales 表:
+------------+------------------+--------------+
| sale_id | product_name | sale_date |
+------------+------------------+--------------+
| 1 | LCPHONE | 2000-01-16 |
| 2 | LCPhone | 2000-01-17 |
| 3 | LcPhOnE | 2000-02-18 |
| 4 | LCKeyCHAiN | 2000-02-19 |
| 5 | LCKeyChain | 2000-02-28 |
| 6 | Matryoshka | 2000-03-31 |
+------------+------------------+--------------+
Result 表:
+--------------+--------------+----------+
| product_name | sale_date | total |
+--------------+--------------+----------+
| lcphone | 2000-01 | 2 |
| lckeychain | 2000-02 | 2 |
| lcphone | 2000-02 | 1 |
| matryoshka | 2000-03 | 1 |
+--------------+--------------+----------+
1 月份,卖了 2 个 LcPhones,请注意产品名称是小写的,中间可能包含空格
2 月份,卖了 2 个 LCKeychains 和 1 个 LCPhone
3 月份,卖了 1 个 matryoshka
--简单题,注意对数据的处理函数的学习,是我的薄弱点,
--replace 可用trim函数来代替
select
replace(lower(product_name),' ','') product_name ,left(sale_date,7) sale_date ,
count(1) total
from
Sales
group by replace(lower(product_name),' ','') ,left(sale_date,7)
order by product_name,sale_date
120.每件商品的最新订单
写一个SQL 语句, 找到每件商品的最新订单(可能有多个)
返回的结果以 product_name 升序排列, 如果有排序相同, 再以 product_id 升序排列. 如果还有排序相同, 再以 order_id 升序排列
表: Customers
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| name | varchar |
+---------------+---------+
customer_id 是该表主键.
该表包含消费者的信息.
表: Orders
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| order_id | int |
| order_date | date |
| customer_id | int |
| product_id | int |
+---------------+---------+
order_id 是该表主键.
该表包含消费者customer_id产生的订单.
不会有商品被相同的用户在一天内下单超过一次.
表: Products
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| product_id | int |
| product_name | varchar |
| price | int |
+---------------+---------+
product_id 是该表主键.
该表包含所有商品的信息.
写一个SQL 语句, 找到每件商品的最新订单(可能有多个).
返回的结果以 product_name 升序排列, 如果有排序相同, 再以 product_id 升序排列. 如果还有排序相同, 再以 order_id 升序排列.
查询结果格式如下例所示:
Customers
+-------------+-----------+
| customer_id | name |
+-------------+-----------+
| 1 | Winston |
| 2 | Jonathan |
| 3 | Annabelle |
| 4 | Marwan |
| 5 | Khaled |
+-------------+-----------+
Orders
+----------+------------+-------------+------------+
| order_id | order_date | customer_id | product_id |
+----------+------------+-------------+------------+
| 1 | 2020-07-31 | 1 | 1 |
| 2 | 2020-07-30 | 2 | 2 |
| 3 | 2020-08-29 | 3 | 3 |
| 4 | 2020-07-29 | 4 | 1 |
| 5 | 2020-06-10 | 1 | 2 |
| 6 | 2020-08-01 | 2 | 1 |
| 7 | 2020-08-01 | 3 | 1 |
| 8 | 2020-08-03 | 1 | 2 |
| 9 | 2020-08-07 | 2 | 3 |
| 10 | 2020-07-15 | 1 | 2 |
+----------+------------+-------------+------------+
Products
+------------+--------------+-------+
| product_id | product_name | price |
+------------+--------------+-------+
| 1 | keyboard | 120 |
| 2 | mouse | 80 |
| 3 | screen | 600 |
| 4 | hard disk | 450 |
+------------+--------------+-------+
Result
+--------------+------------+----------+------------+
| product_name | product_id | order_id | order_date |
+--------------+------------+----------+------------+
| keyboard | 1 | 6 | 2020-08-01 |
| keyboard | 1 | 7 | 2020-08-01 |
| mouse | 2 | 8 | 2020-08-03 |
| screen | 3 | 3 | 2020-08-29 |
+--------------+------------+----------+------------+
keyboard 的最新订单在2020-08-01, 在这天有两次下单
mouse 的最新订单在2020-08-03, 在这天只有一次下单
screen 的最新订单在2020-08-29, 在这天只有一次下单
hard disk 没有被下单, 我们不把它包含在结果表中
--简单题,窗口写法
select
product_name,
product_id,
order_id,
order_date
from
(
select
product_name,
t3.product_id,
order_id,
order_date,
dense_rank() over(partition by t3.product_id order by order_date desc ) as rn
from
Customers t1
join Orders t2 on t1.customer_id = t2.customer_id
join Products t3 on t2.product_id = t3.product_id
) t4
where rn =1
order by product_name,product_id,order_id
SELECT
p.product_name AS product_name,
o2.product_id,
o2.order_id,
o2.order_date
FROM
Orders o1,
Orders o2,
Customers c,
Products p
WHERE
o1.product_id = o2.product_id
AND o1.order_date >= o2.order_date
AND o2.customer_id = c.customer_id
AND o2.product_id = p.product_id
GROUP BY
p.product_name,
o2.product_id,
o2.order_id,
o2.order_date
HAVING
COUNT(DISTINCT o1.order_date) = 1