三个线程t1、t2、t3。确保三个线程,t1 执行完后 t2 执行,t2 执行完后 t3 执行。
一、使用 CountDownLatch
二、使用 join
thread.join 把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程。比如在线程 A 中调用了线程 B 的 join(),直到线程 B 执行完毕后,才会继续执行线程 A。
public class ThreadTest1 {
// T1、T2、T3三个线程顺序执行
public static void main(String[] args) {
Thread t1 = new Thread(new Work(null));
Thread t2 = new Thread(new Work(t1));
Thread t3 = new Thread(new Work(t2));
t1.start();
t2.start();
t3.start();
}
static class Work implements Runnable {
private Thread beforeThread;
public Work(Thread beforeThread) {
this.beforeThread = beforeThread;
}
public void run() {
if (beforeThread != null) {
try {
beforeThread.join();
System.out.println("thread start:" + Thread.currentThread().getName());
} catch (InterruptedException e) {
e.printStackTrace();
}
} else {
System.out.println("thread start:" + Thread.currentThread().getName());
}
}
}
}
三、CachedThreadPool
FutureTask 一个可取消的异步计算。FutureTask 实现了 Future 的基本方法,提空 start cancel 操作,可以查询计算是否已经完成,并且可以获取计算的结果。结果只可以在计算完成之后获取, get 方法会阻塞当计算没有完成的时候,一旦计算已经完成,那么计算就不能再次启动或是取消。
一个 FutureTask 可以用来包装一个 Callable 或是一个 runnable 对象。因为 FurtureTask 实现了 Runnable 方法,所以一个 FutureTask 可以提交(submit)给一个 Excutor 执行(excution)。
import java.util.concurrent.Callable;
import java.util.concurrent.FutureTask;
public class ThreadTest3 {
// T1、T2、T3三个线程顺序执行
public static void main(String[] args) {
FutureTask<Integer> future1 = new FutureTask<Integer>(new Work(null));
Thread t1 = new Thread(future1);
FutureTask<Integer> future2 = new FutureTask<Integer>(new Work(future1));
Thread t2 = new Thread(future2);
FutureTask<Integer> future3 = new FutureTask<Integer>(new Work(future2));
Thread t3 = new Thread(future3);
t1.start();
t2.start();
t3.start();
}
static class Work implements Callable<Integer> {
private FutureTask<Integer> beforeFutureTask;
public Work(FutureTask<Integer> beforeFutureTask) {
this.beforeFutureTask = beforeFutureTask;
}
public Integer call() throws Exception {
if (beforeFutureTask != null) {
Integer result = beforeFutureTask.get();//阻塞等待
System.out.println("thread start:" + Thread.currentThread().getName());
} else {
System.out.println("thread start:" + Thread.currentThread().getName());
}
return 0;
}
}
}
四、使用阻塞队列(BlockingQueue)
阻塞队列(BlockingQueue)是java util.concurrent包下重要的数据结构。BlockingQueue 提供了线程安全的队列访问方式:当阻塞队列进行插入数据时,如果队列已满,线程将会阻塞等待直到队列非满;从阻塞队列取数据时,如果队列已空,线程将会阻塞等待直到队列非空。并发包下很多高级同步类的实现都是基于 BlockingQueue 实现的。
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
public class ThreadTest4 {
// T1、T2、T3三个线程顺序执行
public static void main(String[] args) {
//blockingQueue保证顺序
BlockingQueue<Thread> blockingQueue = new LinkedBlockingQueue<Thread>();
Thread t1 = new Thread(new Work());
Thread t2 = new Thread(new Work());
Thread t3 = new Thread(new Work());
blockingQueue.add(t1);
blockingQueue.add(t2);
blockingQueue.add(t3);
for (int i = 0; i < 3; i++) {
Thread t = null;
try {
t = blockingQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
t.start();
//检测线程是否还活着
while (t.isAlive()) ;
}
}
static class Work implements Runnable {
public void run() {
System.out.println("thread start:" + Thread.currentThread().getName());
}
}
}
五、使用单个线程池
newSingleThreadExecutor 返回一个包含单线程的 Executor,将多个任务交给此 Executor 时,这个线程处理完一个任务后接着处理下一个任务,若该线程出现异常,将会有一个新的线程来替代。
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadTest5 {
public static void main(String[] args) {
final Thread t1 = new Thread(new Runnable() {
public void run() {
System.out.println(Thread.currentThread().getName() + " run 1");
}
}, "T1");
final Thread t2 = new Thread(new Runnable() {
public void run() {
System.out.println(Thread.currentThread().getName() + " run 2");
try {
t1.join(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "T2");
final Thread t3 = new Thread(new Runnable() {
public void run() {
System.out.println(Thread.currentThread().getName() + " run 3");
try {
t2.join(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}, "T3");
//使用 单个任务的线程池来实现。保证线程的依次执行
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.submit(t1);
executor.submit(t2);
executor.submit(t3);
executor.shutdown();
}
}
三个线程轮流打印1-100
六、synchronized关键字实现
public class MyThread1 implements Runnable {
private static Object lock = new Object();
private static int count;
private int no;
public MyThread1(int no) {
this.no = no;
}
@Override
public void run() {
while (true) {
synchronized (lock) {
if (count > 100) {
break;
}
if (count % 3 == this.no) {
System.out.println(Thread.currentThread().getName() + "\t" + this.no + "\t" + count);
count++;
} else {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
lock.notifyAll();
}
}
}
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(new MyThread1(0), "A");
Thread t2 = new Thread(new MyThread1(1), "B");
Thread t3 = new Thread(new MyThread1(2), "C");
t1.start();
t2.start();
t3.start();
t1.join();
t2.join();
t3.join();
}
}
七、ReentrantLock实现一
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
public class MyThread2 implements Runnable {
private static ReentrantLock lock = new ReentrantLock();
private static Condition condition = lock.newCondition();
private static int count;
private int no;
public MyThread2(int no) {
this.no = no;
}
@Override
public void run() {
while (true) {
lock.lock();
if (count > 100) {
break;
} else {
if (count % 3 == this.no) {
System.out.println(this.no + "-->" + count);
count++;
} else {
try {
condition.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
condition.signalAll();
lock.unlock();
}
}
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(new MyThread2(0));
Thread t2 = new Thread(new MyThread2(1));
Thread t3 = new Thread(new MyThread2(2));
t1.start();
t2.start();
t3.start();
t1.join();
t2.join();
t3.join();
}
}
八、ReentrantLock 实现二
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Testmain {
public static void main(String[] args) {
Alternate an = new Alternate();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 33; i++) {
an.logA(i);
}
}
}, "A").start();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 33; i++) {
an.logB(i);
}
}
}, "B").start();
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 1; i <= 33; i++) {
an.logC(i);
System.out.println("--------------------------------");
}
}
}, "C").start();
}
}
class Alternate {
private static int num = 1;
private int tempA = 0;
private int tempB = 0;
private int tempC = 0;
Lock lock = new ReentrantLock();
private Condition condition1 = lock.newCondition();
private Condition condition2 = lock.newCondition();
private Condition condition3 = lock.newCondition();
public void logA(int total) {
lock.lock();
try {
if (num != 1 && num != (tempA + 3)) {
condition1.await();
}
System.out.println(Thread.currentThread().getName() + "\t" + num + "\t" + total);
tempA = num;
num++;
condition2.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void logB(int total) {
lock.lock();
try {
if (num != 2 && num != (tempB + 3)) {
condition2.await();
}
System.out.println(Thread.currentThread().getName() + "\t" + num + "\t" + total);
tempB = num;
num++;
condition3.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
public void logC(int total) {
lock.lock();
try {
if (num != 3 && num != (tempC + 3)) {
condition3.await();
}
System.out.println(Thread.currentThread().getName() + "\t" + num + "\t" + total);
tempC = num;
num++;
condition1.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}
}