LightGBM On Spark

通常业务中对计算性能有要求时,通常不使用GPU跑tf,会使用xgboost on Spark来解决,既保证速度,准确率也能接受。
LightGBM是使用基于树的学习算法的梯度增强框架。它被设计为分布式且高效的,具有以下优点:

根据官网的介绍:

LigthGBM训练速度更快,效率更高。LightGBM比XGBoost快将近10倍。
降低内存使用率。内存占用率大约为XGBoost的1/6。
准确性有相应提升。
支持并行和GPU学习。
能够处理大规模数据。

大部分使用和分析LigthGBM的都是在python单机版本上。要在spark上使用LigthGBM,需要安装微软的MMLSpark包。
MMLSpark可以通--packages安装。

spark --packages参数

根据jar包的maven地址,使用该包,该参数不常用,因为公司内部的数据平台的集群不一定能联网。
如下示例:

$ bin/spark-shell --packages  com.microsoft.ml.spark:mmlspark_2.11:1.0.0-rc1 http://maven.aliyun.com/nexus/content/groups/public/
--repositories 为该包的maven地址,建议给定,不写则使用默认源。
若依赖多个包,则中间以逗号分隔,类似--jars
默认下载的包位于当前用户根目录下的.ivy/jars文件夹中
应用场景:本地没有编译好的jar包,集群中服务需要该包的的时候,都是从给定的maven地址,直接下载

MMLSpark用法

1 .MMLSpark可以通--packages选项方便地安装在现有的Spark集群上,例如:

spark-shell --packages com.microsoft.ml.spark:mmlspark_2.11:1.0.0-rc1

pyspark --packages com.microsoft.ml.spark:mmlspark_2.11:1.0.0-rc1

spark-submit --packages com.microsoft.ml.spark:mmlspark_2.11:1.0.0-rc1 MyApp.jar

这也可以在其他Spark contexts中使用,例如,可以通过将MMLSpark添加到.aztk/spark-default.conf文件中来在AZTK中使用MMLSpark。

2 .要在Python(或Conda)安装上尝试MMLSpark,首先通过pip安装PySpark, pip安装PySpark。接下来,使用--package或在运行时添加包来获取scala源代码

import pyspark
spark = pyspark.sql.SparkSession.builder.appName("MyApp")\
    .config("spark.jars.packages", "com.microsoft.ml.spark:mmlspark_2.11:1.0.0-rc1")\
    .getOrCreate()
import mmlspark

3 .xgboost比较麻烦,通常是自己编译打包使用,mmlspark中的lightGBM可以直接写Maven依赖或者直接下载jar包添加到项目中使用。

 <dependency>
     <groupId>com.microsoft.ml.spark</groupId>
     <artifactId>mmlspark_2.11</artifactId>
     <version>0.18.0</version>
 </dependency>
 <dependency>
     <groupId>com.microsoft.ml.lightgbm</groupId>
     <artifactId>lightgbmlib</artifactId>
     <version>2.2.350</version>
 </dependency>

mmlspark:https://repo1.maven.org/maven2/com/microsoft/ml/spark/mmlspark_2.11/
lightgbmlib:https://repo1.maven.org/maven2/com/microsoft/ml/lightgbm/lightgbmlib/

  1. 使用
    python
    分类
from mmlspark.lightgbm import LightGBMClassifier
model = LightGBMClassifier(learningRate=0.3,
                           numIterations=100,
                           numLeaves=31).fit(train)

回归

from mmlspark.lightgbm import LightGBMRegressor
model = LightGBMRegressor(application='quantile',
                          alpha=0.3,
                          learningRate=0.3,
                          numIterations=100,
                          numLeaves=31).fit(train)

完整例子:
https://github.com/Azure/mmlspark/blob/master/notebooks/samples/LightGBM%20-%20Quantile%20Regression%20for%20Drug%20Discovery.ipynb

scala
Architecture
Spark上的LightGBM使用简单的包装器和接口生成器(SWIG)为LightGBM添加Java支持。这些Java绑定使用Java本地接口调用到分布式c++ API。
我们通过在MapPartitions调用中使用Spark执行器调用LGBM_NetworkInit来初始化LightGBM。然后,我们将每个工作分区传递到LightGBM,以为LightGBM创建内存中的分布式数据集。然后,我们可以训练LightGBM来生成一个可以用于预测的模型。
LightGBMClassifier和LightGBMRegressor使用SparkML API,从相同的基类继承,与SparkML管道集成,并且可以使用SparkML的交叉验证器进行优化。
可以使用saveNativeModel()将构建的模型保存为使用本机LightGBM模型的SparkML管道。此外,它们与PMML完全兼容,并且可以通过JPMML-SparkML-LightGBM插件转换为PMML格式。

Barrier Execution Mode
默认情况下,LightGBM使用常规的spark范式启动任务,并与驱动程序通信以协调任务执行。驱动线程聚合所有任务主机:端口信息,然后将完整的列表传递给worker,以便NetworkInit被调用。这要求驱动程序知道有多少任务,如果预期的任务数量与实际不同,这将导致初始化死锁。
有一个新的UseBarrierExecutionMode标志,它在激活时使用barrier()阶段阻止所有任务。barrier执行模式简化了聚合所有任务的主机:端口信息的逻辑。要在scala中使用它,你可以调用

val lgbm = new LightGBMClassifier()
    .setLabelCol(labelColumn)
    .setObjective(binaryObjective)
    .setUseBarrierExecutionMode(true)
...
<train classifier>

完整案例查找https://github.com/jpmml/jpmml-sparkml

Reference:

https://github.com/Azure/mmlspark
https://mmlspark.blob.core.windows.net/website/index.html
https://github.com/alipay/jpmml-sparkml-lightgbm
https://github.com/jpmml/jpmml-sparkml

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343