DeepMind改进超参数优化:遗传算法效果超越贝叶斯

学号:16069130022        姓名:李凤仪

链接:http://mp.weixin.qq.com/s/AVvno0FtMMK6E1cCeTjzyg

【嵌牛导读】

经常被人忽略的是,神经网络的成功是在特定的应用情景下所取得

【嵌牛鼻子】

我们介绍了一种新的训练神经网络的方法,这种方法能够帮助研究者快速地选择最适用于此任务的超参数和模型

【嵌牛提问】

该技术是两种最常用的超参数优化方法的混合体:随机搜索和手动微调法

【嵌牛正文】

从围棋、Atari游戏到图像识别、语言翻译领域,神经网络都已经取得了重大的突破。但是,经常被人忽略的是,神经网络的成功是在特定的应用情景下所取得,这些情景通常是在一系列研究的开始就确定好了的设置,包括所使用的神经网络的类型,所使用的数据以及训练的方法等。如今,这些设置,也被称为超参数,通常可以通过经验,随机搜索或者大规模的研究过程来决定。

在最新发表的文章中,我们介绍了一种新的训练神经网络的方法,这种方法能够帮助研究者快速地选择最适用于此任务的超参数和模型。

这种技术,被称为基于种群的训练方法(PBT),能够同时训练并优化一些的神经网络,以便快速地寻找到最佳的网络配置。更重要地是,这种方法不会增加计算的成本,能够像传统方法那样快速地得到结果,还能很容易地整合到现有的机器学习方法中。

该技术是两种最常用的超参数优化方法的混合体:随机搜索和手动微调法。

在随机搜索法中,一群神经网络会被同时独立地训练,并在训练结束后选出训练性能最佳的那个模型。通常情况下,只有很少一部分的神经网络训练后能够得到良好的超参数配置,而绝大部分神经网络训练后得到的超参数都是不良的,这无疑是在浪费计算力资源。

超参数的随机搜索法,就是同时独立地训练多种超参数。有些超参数会使得模型表现出好的性能,而有些则不会。

使用手动微调法,研究者必须要推测到最佳的超参数设置,使用它们来训练模型并评估模型的性能。这步骤需要反复的进行,直到得到令人满意的网络性能。尽管这样能够得到较好的性能,但这种方法的弊端就是需要消耗很长的时间,有时候需要花费数周甚至数月的时间才能得到良好的超参数设置。此外,虽然存在一些方法能够自动进行微调步骤,如贝叶斯优化,它仍需要花费很长的时间,并要连续多次地训练模型,才能得来得到最佳的超参数设置。

诸如手动微调和贝叶斯优化的方法,都是通过连续地多次训练过程来对超参数做出调整,这使得这些方法变得耗时。

基于种群的训练方法,和随机搜索法一样,可以用随机超参数来同时训练多个神经网络。但不同于网络的独立训练,它使用剩余种群的信息来改善超参数,并对有前景的模型分配进行资源计算。这是从遗传算法中得到的灵感,种群中的每个成员称为工人,它们能够从种群的剩余部分中挖掘出信息。例如,一个工人可以复制另一个工人的模型参数,也可以随机改变参数当前值来探索新的超参数配置。

随着种群神经网络的训练进行,周期性地挖掘和探索超参数配置,能确保种群里所有的工人能够有一个好的基础性能,并且新的超参数都能够被探索到。这意味着基于种群的训练方法能够快速地挖掘到良好的超参数,从而集中训练更有前途的模型。更重要的是,它能够在训练过程适应超参数的值,自动学习到最好的超参数配置。

基于种群的神经网络训练方法,像随机搜索法一样开始训练,还能允许一个工人挖掘其他工人的部分结果并在训练过程探索新的超参数。

我们的实验表明,基于种群的训练方法在大量的任务和领域都表现出非常高效的性能。例如,我们严格地在一系列充满挑战性的强化学习问题上测试了我们的算法,如DeepMind实验室最先进的方法,雅达利(Atari)和星际争霸2(StarCraft II)。所有的情况下,基于种群的训练方法都能够稳定地训练,快速地发现良好的超参数,并能得到超越当前最佳基准的结果。

我们还发现,基于种群的训练方法能够更有效地训练生成对抗网络。这是个众所周知很难进行微调的难题。具体地说,我们使用基于种群的训练框架来最大化Inception Score值,一种视觉保真度的度量。对此,结果有显著的改善,Inception Score值从6.45增至6.9。

我们还将该算法应用到Google的一个最先进的用于机器翻译的神经网络,这个神经网络通常需要花费数月的训练时间,才能在训练过程认真地手动微调超参数配置来得到最佳的模型性能。利用基于种群的训练方法,我们能够自动发现超参数配置,得到能够匹配于甚至超过当前性能的结果而不需要做任何调整,同时还只需要一个单一的训练过程就能得到结果。

运用种群算法,我们在CIFAR-10数据库训练GANs和Ms Pacman数据库训练Feudal Networks (FuN)的变化情况。粉红色的点代表初始状态,蓝色的店则代表最终状态。

我们相信这仅仅是该技术的一个开始。在DeepMind,我们还发现基于种群的训练方法在训练新算法和新增超参数的神经网络结构方面特别有用。在进一步改善过程中,基于种群的训练方法将在发现和发展更复杂、更有用的神经网络模型方面,拥有更有的可能性。

这项工作由Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando and  Koray Kavukcuoglu完成。

原文链接:

https://deepmind.com/blog/population-based-training-neural-networks/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容