《博弈论》笔记

1

Strategic setting

Strategic setting is a setting where the outcomes that affect you depend on actions, not just on your own actions ,but on actions of others

Strictly dominant strategy

My strategy Alpha strictly dominates my strategy Beta (Alpha is strictly dominant strategy, Beta is strictly dominated strategy) if my payoff from Alpha is strictly greater than that from Beta regardless of what others do.

Lesson 1 : Do not play a strictly dominated strategy.
Lesson 2 : Rational choice in Prisoner's Dilemma lead to inefficient outcomes.
Lesson 3 : Payoffs matter. What people care about matter.
Lesson 4 : Put yourself in others' shoes and try to figure out what they will do

2

The ingredients of a game
ingredient notation
players i
strategies s_i(a particular strategy of i) , S_i(the set of possible strategies of i) , s(a strategy profile where one strategy for each player in the game) , s-i(a strategy choice for everybody except i)
payoffs u_i(s)(the payoff of i depend on the strategy profile)

In the course, these ingredients are assumed to be known which means everyone knows the possible strategies everyone else could choose and everyone knows everyone else's payoffs, etc.

Strictly dominated strategy

i's strategy s_i' is strictly dominated by his strategy s_i if u_i(s_i,s-i)>u_i(s_i',s-i) for all s-i( if s_i always yields a higher payoff for i no matter what the other people do )

Weakly dominated strategy

i's strategy s_i' is weakly dominated by his strategy s_i if u_i(s_i,s-i) \geq u_i(s_i',s-i) for all s-i and u_i(s_i,s-i)>u_i(s_i',s-i) for at least one s-i

3

Iterative deletion of dominated strategies

Putting self in someone else's shoes, and trying to figure out what they are going to do, then think about them putting themselves in your shoes figuring out what you are going to do and so on.

Best response

To think of a strategy that is the best you can do, given your belief about what the other people are doing.(在你对别人如何行动有一定信念时,你能做出的最佳策略)
信念->所有可能的概率 最佳策略->某一信念下达到最大数学期望的策略

4

Lesson 5 : Do not choose a strategy that is never a best response to any belief

Best response
  • i's strategy \hat{s_i} is a best response to the strategies s-i of the other players if u_i(\hat{s_i},s-i) \geq u_i(s_i',s-i) for all s_i' \in S_i ——决定论——
    which also means the best response \hat{s_i} solves Max \text{ } u_i(s_i,s-i)
  • 估计对方选择哪一策略可能性更大,根据上式决定己方最佳对策 ——直觉可能性——
  • i's strategy \hat{s_i} is a best response to the belief p about the other players' choice if Eu_i(\hat{s_i},p) \geq Eu_i(s_i',p) for all s_i' \in S_i ——概率论——
    Eu_i(s_i,p)=u_i(s_i,(s-i)_1)p((s-i)_1)+...+u_i(s_i,(s-i)_n)p((s-i)_n)
Nash Equilibrium

In a partnership game, 2 players share 50% of the profits each and they need to choose the effort level as his strategy.

  • players' continuum of strategies s_i \in [0,4]
  • total profit 4(s_1+s_2+bs_1s_2) synergy rateb \in [0,\frac {1}{4}]
  • payoffs u_i(s_1,s_2)=\frac {1}{2} [4(s_1+s_2+bs_1s_2)]-s_i^2
  1. u_1(s)=2(s_1+s_2+bs_1s_2)-s_1^2
  2. Max\,u_1\mid _{s_1}
  3. \frac {\delta u_1}{\delta s_1}=2(1+bs_2)-2s_1=0
  4. \frac {\delta ^2 u_1}{\delta s_1\,^2}=-2<0\implies \text{一阶导函数斜率为负,原函数在一阶导函数零点处取得最大值}
  5. 2(1+bs_2)-2\hat{s_1}=0\implies BR_1(s_2)=\hat{s_1}=1+bs_2 \text{,同理得}BR_2(s_1)=\hat{s_2}=1+bs_1
  6. Iterative deletion of dominated strategies \implies Nash Equilibrium
    b=1/4

5

Nash Equilibrium

In a strategy profile NE(s_1^*,s_2^*,...,s_n^*) ,\forall i,s_i^* is a best response to s^*-i

Motivation 1 : No regrets. In NE, holding everyone else's actions fixed, no individual strategy can do strictly better by moving away.
Motivation 2 : A NE can be thought of as self-fulfilling belief.

Lesson 6 : NE can be a self-enforcing agreement. So in coordination problems, unlike prisoner's dilemma, just communication can help.(协同谬误中存在多个NE,可以利用沟通导向更有利的NE)
Lesson 7 : Coordination games are games where there is a "Scope for leadership".

6

Games of strategic complements 策略互补博弈

In games of strategic complements, the more the other person does, the more I want to do.

Cournot Duopoly 古诺双寡头模型
  • players : 2 firms
  • strategies : the quantities of an identical product q_i
  • constant marginal cost : c
    cost of prodution : c \times q
    market price : p=a-b(q_1+q_2)

Textbook

Dutta's Strategy and Games
Joel Watson's Strategies

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352