spark源码阅读-KafkaUtils代码-Direct方式

KafkaUtils 用于创建一个从Kafka Brokers 拉取数据的输入数据流。
之前有一个文章介绍了sparkstream创建kafka的数据流有两种方式,一种是Receiver 一种是Direct方式。我们先看下Direct方式,具体的区别可以参考我的另一篇文章https://www.jianshu.com/p/88862316c4db
代码深入:
KafkaUtils->DirectKafkaInputDStream

def createDirectStream[
    K: ClassTag,
    V: ClassTag,
    KD <: Decoder[K]: ClassTag,
    VD <: Decoder[V]: ClassTag,
    R: ClassTag] (
      ssc: StreamingContext,
      kafkaParams: Map[String, String],
      fromOffsets: Map[TopicAndPartition, Long],
      messageHandler: MessageAndMetadata[K, V] => R
  ): InputDStream[R] = {
    val cleanedHandler = ssc.sc.clean(messageHandler)
    new DirectKafkaInputDStream[K, V, KD, VD, R](
      ssc, kafkaParams, fromOffsets, cleanedHandler)
  }

入参如上所示 ssc,kafkaParams,topics,可以多个topic,storageLevel
DirectKafkaInputDStream KafkaRDD的stream,并且Kafka的每个topic的每个Partition 与RDD的partition一一对应。
spark.streaming.kafka.maxRatePerPartition 这个参数决定了每个partition每秒钟接收的最大的消息数量。并且这个Dstream并不负责提交offsets。因此你可以实现exactly-once 语义。
首先我们要看一下compute方法,也就是负责产生指定时间RDD的方法。这个方法我会在DStream里面提到。

override def compute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = {
    val untilOffsets = clamp(latestLeaderOffsets(maxRetries))//获取各个partition应该获取的offset 也就是当前的offset+maxRatePerPartition 和partiton最新的offset中取最小值。
    val rdd = KafkaRDD[K, V, U, T, R](//根据当前的offset和最新的offset创建一个KafkaRdd
      context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler)

    // Report the record number and metadata of this batch interval to InputInfoTracker.
    val offsetRanges = currentOffsets.map { case (tp, fo) =>
      val uo = untilOffsets(tp)
      OffsetRange(tp.topic, tp.partition, fo, uo.offset)
    }
    val description = offsetRanges.filter { offsetRange =>
      // Don't display empty ranges.
      offsetRange.fromOffset != offsetRange.untilOffset
    }.map { offsetRange =>
      s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" +
        s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"
    }.mkString("\n")
    // Copy offsetRanges to immutable.List to prevent from being modified by the user
    val metadata = Map(
      "offsets" -> offsetRanges.toList,
      StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)
    val inputInfo = StreamInputInfo(id, rdd.count, metadata)
    ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
    //更新当前的offsets
    currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset)
    Some(rdd)
  }

然后看下clamp方法 :获取各个partition应该获取的offset: 也就是当前的offset+maxRatePerPartition 和partiton最新的offset中取最小值。

 protected def clamp(
    leaderOffsets: Map[TopicAndPartition, LeaderOffset]): Map[TopicAndPartition, LeaderOffset] = {
    maxMessagesPerPartition.map { mmp =>
      leaderOffsets.map { case (tp, lo) =>
        tp -> lo.copy(offset = Math.min(currentOffsets(tp) + mmp, lo.offset))
      }
    }.getOrElse(leaderOffsets)
  }

再看获取最新offset的方法,入参是获取leaderoffset的重试参数。由于机器宕机等原因,某个partition的leader可能丢失,所以这个时候会有一个isr中的broker,成为该partition的leader。这样consumer就能够连接新的leader了。

 @tailrec
  protected final def latestLeaderOffsets(retries: Int): Map[TopicAndPartition, LeaderOffset] = {
    val o = kc.getLatestLeaderOffsets(currentOffsets.keySet)//获取partition leader的offset
    // Either.fold would confuse @tailrec, do it manually
    if (o.isLeft) {//如果异常
      val err = o.left.get.toString
      if (retries <= 0) {//且重试次数为不大于0 的时候这抛出异常
        throw new SparkException(err)
      } else {//否则重试,并且线程等待 一定时间后,默认是200ms,这个可以通过修改refresh.leader.backoff.ms 参数修改
        log.error(err)
        Thread.sleep(kc.config.refreshLeaderBackoffMs)
        latestLeaderOffsets(retries - 1)
      }
    } else {
      o.right.get
    }
  }

这建议大家可以将重试次数设置成3,并且超时时间设置成3000。并且做好Job的运行状态检查,如果发现job异常退出的时候,可以自动重启Job。
KafkaRDD的创建参考KafkaRDD
https://www.jianshu.com/p/0b0767393d63

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容