四.KafkaAPI实战

4.1 环境准备

1)在eclipse中创建一个java工程

2)在工程的根目录创建一个lib文件夹

3)解压kafka安装包,将安装包libs目录下的jar包拷贝到工程的lib目录下,并build path。

4)启动zk和kafka集群,在kafka集群中打开一个消费者

[itstar@bigdata11 kafka]$ bin/kafka-console-consumer.sh --zookeeper

bigdata11:2181 --topic first

4.2 Kafka生产者Java API

4.2.1 创建生产者(过时的API)

package com.itstar.kafka;

import java.util.Properties;

import kafka.javaapi.producer.Producer;

import kafka.producer.KeyedMessage;

import kafka.producer.ProducerConfig;

public class OldProducer {

@SuppressWarnings("deprecation")

public static void main(String[] args) {

Properties properties = new Properties();

properties.put("metadata.broker.list", "bigdata11:9092");

properties.put("request.required.acks", "1");

properties.put("serializer.class", "kafka.serializer.StringEncoder");

Producer<Integer, String> producer = new Producer<Integer,String>(new

ProducerConfig(properties));

KeyedMessage<Integer, String> message = new KeyedMessage<Integer,

String>("first", "hello world");

producer.send(message );

}

}

4.2.2 创建生产者(新API)

package com.itstar.kafka;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerRecord;

public class NewProducer {

public static void main(String[] args) {

Properties props = new Properties();

// Kafka服务端的主机名和端口号

props.put("bootstrap.servers", "bigdata12:9092");

// 等待所有副本节点的应答

props.put("acks", "all");

// 消息发送最大尝试次数

props.put("retries", 0);

// 一批消息处理大小

props.put("batch.size", 16384);

// 请求延时

props.put("linger.ms", 1);

// 发送缓存区内存大小

props.put("buffer.memory", 33554432);

// key序列化

props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

// value序列化

props.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

KafkaProducer<String, String> producer = new KafkaProducer<>(props);

for (int i = 0; i < 50; i++) {

producer.send(new ProducerRecord<String, String>("first",

Integer.toString(i), "hello world-" + i));

}

producer.close();

}

}

4.2.3 创建生产者带回调函数(新API)

package com.itstar.kafka;

import java.util.Properties;

import org.apache.kafka.clients.producer.Callback;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.apache.kafka.clients.producer.RecordMetadata;

public class CallBackProducer {

public static void main(String[] args) {

Properties props = new Properties();

// Kafka服务端的主机名和端口号

props.put("bootstrap.servers", "bigdata12:9092");

// 等待所有副本节点的应答

props.put("acks", "all");

// 消息发送最大尝试次数

props.put("retries", 0);

// 一批消息处理大小

props.put("batch.size", 16384);

// 增加服务端请求延时

props.put("linger.ms", 1);

// 发送缓存区内存大小

props.put("buffer.memory", 33554432);

// key序列化

props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

// value序列化

props.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>

(props);

for (int i = 0; i < 50; i++) {

kafkaProducer.send(new ProducerRecord<String, String>("first",

"hello" + i), new Callback() {

@Override

public void onCompletion(RecordMetadata metadata, Exception

exception) {

if (metadata != null) {

System.out.println(metadata.partition() + "---" +

metadata.offset());

}

}

});

}

kafkaProducer.close();

}

}

4.2.4 自定义分区生产者

0)需求:将所有数据存储到topic的第0号分区上

1)定义一个类实现Partitioner接口,重写里面的方法(过时API)

package com.itstar.kafka;

import java.util.Map;

import kafka.producer.Partitioner;

public class CustomPartitioner implements Partitioner {

public CustomPartitioner() {

super();

}

@Override

public int partition(Object key, int numPartitions) {

// 控制分区

return 0;

}

}

2)自定义分区(新API)

package com.itstar.kafka;

import java.util.Map;

import org.apache.kafka.clients.producer.Partitioner;

import org.apache.kafka.common.Cluster;

public class CustomPartitioner implements Partitioner {

@Override

public void configure(Map<String, ?> configs) {

}

@Override

public int partition(String topic, Object key, byte[] keyBytes, Object

value, byte[] valueBytes, Cluster cluster) {

// 控制分区

return 0;

}

@Override

public void close() {

}

}

3)在代码中调用

package com.itstar.kafka;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.Producer;

import org.apache.kafka.clients.producer.ProducerRecord;

public class PartitionerProducer {

public static void main(String[] args) {

Properties props = new Properties();

// Kafka服务端的主机名和端口号

props.put("bootstrap.servers", "bigdata12:9092");

// 等待所有副本节点的应答

props.put("acks", "all");

// 消息发送最大尝试次数

props.put("retries", 0);

// 一批消息处理大小

props.put("batch.size", 16384);

// 增加服务端请求延时

props.put("linger.ms", 1);

// 发送缓存区内存大小

props.put("buffer.memory", 33554432);

// key序列化

props.put("key.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

// value序列化

props.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

// 自定义分区

props.put("partitioner.class", "com.itstar.kafka.CustomPartitioner");

Producer<String, String> producer = new KafkaProducer<>(props);

producer.send(new ProducerRecord<String, String>("first", "1",

"itstar"));

producer.close();

}

}

4)测试

(1)在bigdata11上监控/opt/module/kafka/logs/目录下fifirst主题3个分区的log日志动态变化情况

[itstar@bigdata11 first-0]$ tail -f 00000000000000000000.log

[itstar@bigdata11 first-1]$ tail -f 00000000000000000000.log

[itstar@bigdata11 first-2]$ tail -f 00000000000000000000.log

(2)发现数据都存储到指定的分区了。

4.3 Kafka消费者Java API

0)在控制台创建发送者

[itstar@bigdata13 kafka]$ bin/kafka-console-producer.sh --broker-list

bigdata11:9092 --topic first

>hello world

1)创建消费者(过时API)

package com.itstar.kafka.consume;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Properties;

import kafka.consumer.Consumer;

import kafka.consumer.ConsumerConfig;

import kafka.consumer.ConsumerIterator;

import kafka.consumer.KafkaStream;

import kafka.javaapi.consumer.ConsumerConnector;

public class CustomConsumer {

@SuppressWarnings("deprecation")

public static void main(String[] args) {

Properties properties = new Properties();

properties.put("zookeeper.connect", "bigdata11:2181");

properties.put("group.id", "g1");

properties.put("zookeeper.session.timeout.ms", "500");

properties.put("zookeeper.sync.time.ms", "250");

properties.put("auto.commit.interval.ms", "1000");

// 创建消费者连接器

ConsumerConnector consumer = Consumer.createJavaConsumerConnector(new

ConsumerConfig(properties));

HashMap<String, Integer> topicCount = new HashMap<>();

topicCount.put("first", 1);

Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap =

consumer.createMessageStreams(topicCount);

KafkaStream<byte[], byte[]> stream = consumerMap.get("first").get(0);

ConsumerIterator<byte[], byte[]> it = stream.iterator();

while (it.hasNext()) {

System.out.println(new String(it.next().message()));

}

}

}

2)官方提供案例(自动维护消费情况)(新API)

package com.itstar.kafka.consume;

import java.util.Arrays;

import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.clients.consumer.ConsumerRecords;

import org.apache.kafka.clients.consumer.KafkaConsumer;

public class CustomNewConsumer {

public static void main(String[] args) {

Properties props = new Properties();

// 定义kakfa 服务的地址,不需要将所有broker指定上

props.put("bootstrap.servers", "bigdata11:9092");

// 制定consumer group

props.put("group.id", "test");

// 是否自动确认offset

props.put("enable.auto.commit", "true");

// 自动确认offset的时间间隔

props.put("auto.commit.interval.ms", "1000");

// key的序列化类

props.put("key.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");

// value的序列化类

props.put("value.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");

// 定义consumer

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

// 消费者订阅的topic, 可同时订阅多个

consumer.subscribe(Arrays.asList("first", "second","third"));

while (true) {

// 读取数据,读取超时时间为100ms

ConsumerRecords<String, String> records = consumer.poll(100);

for (ConsumerRecord<String, String> record : records)

System.out.printf("offset = %d, key = %s, value = %s%n",

record.offset(), record.key(), record.value());

}

}

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容