深度学习模块13-MSCA模块

12、MSCA模块

论文《SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation》

1、作用

SegNeXt旨在为语义分割任务提供一个简单而有效的卷积网络架构。通过重新考虑卷积注意力的设计,提出了一种比传统自注意力机制更高效的方法来编码空间信息。

2、机制

1、SegNeXt结合了强大的编码器、多尺度信息交互和空间注意力来提升语义分割的性能。

2、通过采用便宜的卷积操作和简化的设计,SegNeXt实现了与先进方法相比的显著性能提升,同时大幅减少了参数数量。

3、该模型通过使用多尺度卷积特征来激发空间注意力,采用简单的元素级乘法操作,证明了这种方式比标准卷积和自注意力在空间信息编码方面更高效。

3、独特优势

1、SegNeXt在多个流行的基准测试中,包括ADE20K、Cityscapes、COCO-Stuff、Pascal VOC、Pascal Context和iSAID上,显著改善了之前最先进方法的性能。

2、特别是,SegNeXt使用只有EfficientNet-L2 w/ NAS-FPN 1/10参数的情况下,在Pascal VOC 2012测试排行榜上达到了90.6% mIoU的成绩。

3、平均而言,SegNeXt在ADE20K数据集上比最先进方法提高了约2.0%的mIoU,同时计算量更少或相同。

4、代码

import torch
from torch import nn



class AttentionModule(nn.Module):
    def __init__(self, dim):
        super().__init__()
        # 使用5x5核的卷积层,应用深度卷积
        self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)

        # 两组卷积层,分别使用1x7和7x1核,用于跨度不同的特征提取,均应用深度卷积
        self.conv0_1 = nn.Conv2d(dim, dim, (1, 7), padding=(0, 3), groups=dim)
        self.conv0_2 = nn.Conv2d(dim, dim, (7, 1), padding=(3, 0), groups=dim)

        # 另外两组卷积层,使用更大的核进行特征提取,分别为1x11和11x1,也是深度卷积
        self.conv1_1 = nn.Conv2d(dim, dim, (1, 11), padding=(0, 5), groups=dim)
        self.conv1_2 = nn.Conv2d(dim, dim, (11, 1), padding=(5, 0), groups=dim)

        # 使用最大尺寸的核进行特征提取,为1x21和21x1,深度卷积
        self.conv2_1 = nn.Conv2d(dim, dim, (1, 21), padding=(0, 10), groups=dim)
        self.conv2_2 = nn.Conv2d(dim, dim, (21, 1), padding=(10, 0), groups=dim)

        # 最后一个1x1卷积层,用于整合上述所有特征提取的结果
        self.conv3 = nn.Conv2d(dim, dim, 1)

    def forward(self, x):
        u = x.clone() # 克隆输入x,以便之后与注意力加权的特征进行相乘
        attn = self.conv0(x) # 应用初始的5x5卷积

        # 应用1x7和7x1卷积,进一步提取特征
        attn_0 = self.conv0_1(attn)
        attn_0 = self.conv0_2(attn_0)

        # 应用1x11和11x1卷积,进一步提取特征
        attn_1 = self.conv1_1(attn)
        attn_1 = self.conv1_2(attn_1)

        # 应用1x21和21x1卷积,进一步提取特征
        attn_2 = self.conv2_1(attn)
        attn_2 = self.conv2_2(attn_2)
        attn = attn + attn_0 + attn_1 + attn_2 # 将所有特征提取的结果相加

        attn = self.conv3(attn) # 应用最后的1x1卷积层整合特征

        return attn * u # 将原始输入和注意力加权的特征相乘,返回最终结果

if __name__ == "__main__":
    # 创建 AttentionModule 实例,这里以64个通道为例
    attention_module = AttentionModule(dim=64)

    # 创建一个假的输入数据,维度为 [batch_size, channels, height, width]
    # 例如,1个样本,64个通道,64x64的图像
    input_tensor = torch.rand(1, 64, 64, 64)

    # 通过AttentionModule处理输入
    output_tensor = attention_module(input_tensor)

    # 打印输出张量的形状
    print(output_tensor.shape)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容