R语言绘制生存曲线95%区间

1. 安装和加载包

绘制Kaplan-Meier生存曲线需要用到的R包:survminer和survival。

library(survminer) # 加载包

library(survival) # 加载包

2 拟合曲线

R中使用survfit()函数来拟合生存曲线。

fit.3<-survfit(Surv(住院天数+病程,组别)~cd1656,data=data)

3. 绘制曲线函数

ggsurvplot(fit, data = NULL, fun = NULL, color = NULL,

          palette = NULL, linetype = 1, conf.int = FALSE,

          pval = FALSE, pval.method = FALSE,

          test.for.trend = FALSE, surv.median.line = "none",

          risk.table = FALSE, cumevents = FALSE,

          cumcensor = FALSE, tables.height = 0.25,

          group.by = NULL, facet.by = NULL, add.all = FALSE,

          combine = FALSE, ggtheme = theme_survminer(),

          tables.theme = ggtheme, ...)

# 参数解释

fit # 拟合的生存曲线对象

data # 用来拟合生存曲线的数据集

fun  # 常用三个字符参数;

# "event"绘制累积事件(f(y)=1-y),

# "cumhaz"绘制累积危害函数(f(y)=-log(y));

# "pct"绘制生存概率(百分比)。

color # 设置生存曲线的颜色。

# 如果只有1条曲线,则直接设置color="blue";

# 如果有多条曲线,默认color="strata",按分组为生存曲线着色;

# 也可以自定义调色板来设置曲线颜色。

palette # 调色板,默认"hue"。

# 可选调色板有"grey","npg","aaas","lancet",

# "jco", "ucscgb","uchicago","simpsons"和"rickandmorty".

linetype = 1 # 设置曲线线型。可以按"strata"设置线型;

# 或按数字向量c(1, 2)或按字符向量c("solid", "dashed")设置

conf.int # 逻辑词;默认FASLE;为TRUE则绘制曲线置信区间

pval = FALSE # 逻辑词;为TRUE则将统计检验计算的p值添加到图上;

# 为数字,则直接指定P值大小,如pval = 0.03;

# 为字符串,则添加字符串到图上,如pval = "p-value: 0.031"

pval.method  # 逻辑词,是否添加计算p值的统计方法的文本;

# 只有当 pval = TRUE时, 才会在图上添加检验方法文本

test.for.trend # 逻辑词,默认为FALSE;

# 为TRUE则返回趋势p值的检验,趋势检验旨在检验生存曲线的有序差异

surv.median.line # 在中位生存时间点处绘制水平或垂直线的字符向量;

# 可用值有"none"、"hv"、"h"、"v";其中v绘制垂直线,h绘制水平线。

risk.table = FALSE  # 逻辑词,图上是否添加风险表;

# "absolute" 显示处于风险中的绝对数量;

# "percentage" 显示处于风险中的百分比数量

# "abs_pct" 显示处于风险中的绝对数量和百分比

cumevents # 逻辑词,是否添加累计事件表

cumcensor # 逻辑词,是否添加累计删失表

tables.height = 0.25 # 生存曲线图下所有生存表的高度,数值0-1之间

group.by  # 包含分组变量名称的字符向量,向量长度≤2

facet.by # 字符向量,指定绘制分面生存曲线的分组变量(应≤2)的名称

ggtheme=theme_survminer() # 设置ggplot2主题,如theme_bw()

tables.theme # 作用于生存表的ggplot2主题名称

# 有theme_survminer、theme_cleantable()

add.all = FALSE # 逻辑词;是否添加总患者生存曲线到主生存图中


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355