计算几何初步

一、叉积
叉积的计算是线段方法的核心。对于向来p1和p2,叉积是由点(0,0)、p1、p2和p1+p2构成的平行四边形的有向面积。另一种与之等价但更有效的的叉积定义方式是将其看做矩阵行列式:
p1×p2 = x1y2 - x2y1 = - p2×p1
若p1×p2为正,则相对于原点(0,0)来说,p1位于p2顺时针方向;若p1×p2为负,p1位于p2逆时针方向;若为0则方向相同,或相反。

若是相对于点p0(x0,y0)而非原点,则p0p1p0p2的叉积为(p1-p0)×(p2-p0) = (x1-x0)(y2-y0)-(x2-x0)(y1-y0)。

确定连续线段是向左转还是向右转
对于线段p0p1和p1p2,采用叉积可以避免计算角度,只需简单的计算一下p0p2是位于p0p1的顺时针还是逆时针方向。计算叉积****
(p2-p0)×(p1-p0) = (x2-x0)(y1-y0) - (x1-x0)(y2-y0)
若结果为负,p0p2p0p1的逆时针方向,在p1处左转;结果为正则右转;为0表示三点共线。

判断两条线段是否相交
要判断两条线段是否相交,则需要检查每条线段是否跨越了另一条线段的直线。如果点p1位于某直线的一边,而点p2位于该直线的另一边,则称p1p2跨越了这条直线。两条线段相交,当且仅当下面两个条件至少成立一个:****
每条线段都跨越了包含另一条线段的直线

一条线段的一个端点落在另一条线段上

二、确定任意一对线段是否相交
给定一个线段的集合,仅仅判断是否有两个线段相交,不必输出所有相交的线段对。此处我们假设,线段均不垂直。

我们使用“扫除”算法来解决这个问题。在扫除过程中,一条假想的扫除线穿过一个给定的几何物体集合,会与集合中的部分线段相交。下图中扫除线r与线段a、c相交,且与a的交点的y坐标值大于c的,则认为此处a>c。



在图(a)中,在r处,a>c;在t处,a还是>c,那么我们认为a和c没有相交。而在图(b)中,在v处,e>f,而在图w处,f>e,故e和f相交。


上图描述了一个算法,我们按照线段端点的x坐标,从小到达,进行“扫除”。当在一个线段的左端点扫除时,将所有相交的线段序列按序放入一个“完全前序关系T”中。当扫到线段的右端点时,从T中去除该线段。但是,如果位于在该线段上方的线段集合,与位于该线段下方的线段集合有交集,则表明有线段相交。


关键在于,如果存储T,如果求交集。可以用红黑树来存储T。


算法步骤

  1. 初始化T为空集
  2. 对线段的端点排序
  3. 在端点p处,开始扫除,从最左边的处开始
    如果p是线段s的左端点
    Insert(T, s);
    如果有线段在扫除线处相交
    return true;
    如果p是线段的右端点
    如果above(T, s) 和 below(T, s)有交集,则
    return true;//即线段集中存在线段相交
    无交集则,Delete(T, s);
  4. return false

三、寻找凸包
点集Q的凸包,是一个最小的凸多边形P,满足Q中的每个点都在P的边界上,或者在P的内部。****

Graham扫描法: 复杂度O(nlogn)
选取y最小的点,多个y最小的话,选取其中x最小的点,作为p0****

剩余的点,按照p0和pi的极角的逆时针排序,编号为p1,p2,...,pm

如果m小于2,表示点数小于3,形不成多边形

设定以空栈S,将p0、p1、p2压入栈中。

for i=3 to m
得到栈顶的2个点pi-1和pi-2,如果t1t0t0pi转的时候,不是左转,就把顶点t0出栈;

如果出栈了t0,就继续a,直到栈的顶点不再出栈位置

将pi入栈

return S


图中,从a到f是一步一步选择的过程。

Jarvis步进法:复杂度O(nh),h是凸包顶点数


先找到最下边结点里最左边的点p0,然后寻找使得p0p1极角最小的点,则p1也是凸包顶点;继续寻找使得p1p2极角最小的点,直到达到最高点pk,上图是p3,此时已经构造好了CH(Q)的右链。为了构造左链,寻找pk+1使得pkpk+1极角最小,但此时x轴啊原x轴的负方向。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容