谷歌的一致性哈希算法

image

这个算法零内存、分布均匀、计算快速,全是优点了。但是。。。

一、背景

三年前在《一致性hash基础知识》文章中,曾提到 google 有一个算法简单的计算就做到了一致性哈希需要做到的事情。

上个月在《一致性HASH技术的困境》文章的留言中,也有小伙伴提到,有一个 Jump consistent hash 算法可以做到一致性哈希的事情。

其实这两个说的是一个事情,那就是 google 有一个 Jump consistent hash 算法,可以通过数学运算做到和一致性哈希效果一样好的平衡性。

那今天就来看看这个算法吧。

二、看代码

先看代码,下面就是全部的代码。

image

是不是感觉不可思议,这个代码的语法全部都懂,但是合在一起我们就看不懂了。
我第一眼看到这个代码的时候,也是一脸懵逼的。

这个算法是 Google 的 John Lamping 和 Eric Veach 创造的。
他们为这个算法写了一篇论文:《A Fast, Minimal Memory, Consistent Hash Algorithm》。

看了论文后,我才恍然大悟,原来是这样,果然是合理的。
如果你要阅读原文论文,可以公众号后台回复“谷歌算法”获取论文

三、算法原理

一致性哈希算法有两个目标:

  1. 平衡性。即把数据平均的分布在所有节点中。

  2. 单调性。即节点的数量变化时,只需要把一部分数据从旧节点移动到新节点,不需要做其他的移动。

我们根据这个单调性可以推算出一些性质来。
这里先令f(key, n)为一致性哈希算法,输出的为[0,n)之间的数字,代表数据在对应的节点上。

  1. n=1 时,对于任意的key,输出应该都是0

  2. n=2 时,为了保持均匀,应该有1/2的结果保持为01/2的结果输出为1

  3. n=3 时,应该有1/3的结果保持为01/3的结果保持为11/3的结果保持为2

  4. 依次递推,节点数由n变为n+1时,f(key, n)里面应该有n/(n+1)的结果不变,有1/(n+1)的结果变为n

这个使用概率公式来表示,就是这样的代码。

image

关于这个算法直接看可能还是看不懂。
所以需要使用实际数据模拟一下,见下图。

image

关键在于n=2n=3的过程,每个数字的概率从1/2转化到了1/3

之后,我们可以得出一个规律:增加一个节点,数据不发生变化的概率n/(n+1) 再乘以之前每个数字的概率1/n,就可以得出每个数字最新的概率1/(n+1)

由此,可以轻松计算出n=4各数字的概率为1/4。自此,我们可以确定这个算法确实是有效的。

这个算法唯一的缺点是复杂度太高,是O(n)的。
所以需要进行优化。

四、算法优化

在上一小节中,我们了解到f(key, n)算法的正确性。
除了复杂度是O(n)外,我们还可以确定,循环越往后,结果改变的概率会越来越低。

结果改变指的是,增加一个节点后,一个固定的key输出的结果发生了改变。
如果我们能够快速计算出这个固定的key在哪些节点下发生了改变,就可以快速计算出最终答案。

假设某一次结果是b,经过若干次概率测试,下一次改变为a,则从ba-1这中间,不管节点如何变化,这个key的结果都是不会变化的。
根据上一小节的到的概率变化公式,新增一个节点数字不变化的概率是n/(n+1)
那从bi不变化的概率就是b/i(中间的抵消了)。

如果我们有一个均匀的随机函数r,当r<b/i时,f(i)=f(b)
那么i的上界就是(b+1)/r
这个上限也是下一次key发生变化的节点数量,由此可以得出下面的代码。

image

由于r是均匀的,所以期望是1/2
这样,代码中j就是按照指数级增长的,平均复杂度就是O(log(n))了。

回头看看第一个代码,就可以看懂代码了。

第一个key=key*x+1算是一个伪随机生成器。
j=(b+1)*x/y则是上面的求上界的公式,其中y/x通过浮点数运算来产生(0,1)内的一个随机数。
自此,这个代码就可以看懂了。

五、最后

谷歌能够创造这样一个算法确实了不起,但是从实际应用上来,这个算法也没有想象中的好。

如果你用过一致性哈希的话,会发现有很多问题。

因为我们实际使用时,节点往往是有权重的。
这里只有一个节点的最大值,那意味着,节点的扩散需要在外层实现。
也就是需要在外层来储存扩散后的节点列表。

既然外面储存了节点列表,按照 hash 值排序,就可以二分查找出符合要求的节点了。
如果使用 map 储存,也可以在 log 级别找到对应的节点。

由此,可以发现 谷歌的这个算法自身不需要内存了,但是内存需要业务自己维护,实际上还是需要的。

当然,如果你没使用过一致性哈希的话,你不知道我在说什么
或者你可以看看之前我记录的一致性 HASH 文章,然后再回头看看这个小节。

-EOF-

上篇文章:《公有云、私有云、专有云的区别

相关推荐:《一致性hash基础知识(二)

本文公众号:天空的代码世界

个人微信号:tiankonguse

QQ算法群:165531769(不止算法)

知识星球:不止算法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容