数据结构与算法 -- 平衡二叉树

平衡二叉树(AVL树)是一种二叉排序树,其中每个结点的左子树和右子树的高度差至多等于1。

高度平衡
意思是说,要么它是一颗空树,要么它的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值不超过1;我们将二叉树上的结点的左子树深度减去右子树深度的值称为平衡因子BF(Balance factor)

平衡二叉树的删除和查找,和二叉排序树是一样的,它的难点主要在于插入及设计一个平衡二叉树。

平衡二叉树的构建

平衡二叉树构建的基本思想

在构建二叉排序树的过程中,每当插入一个结点时,先检查是否因插入而破坏了树的平衡性,若是,则找到最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,实之称为新的平衡子树。

a[10]={3,2,1,4,5,6,7,10,9,8} 需要构建平衡二叉排序树
1.按照二叉排序树插入3,2,1。因为发生了失衡,将树进行右旋。


image.png

image.png

2.插入4


image.png

3.插入5,发生失衡,将3,4,5进行左旋
image.png

image.png

4.插入6,发生失衡,此时2的BF为-2,失衡了,将1,2,4进行左旋。3变成2的右子树。达到新的平衡。
image.png

image.png

5.插入7。导致5,6,7失衡,左旋得到图9


image.png

image.png

6.插入10。
image.png

7.插入9,将7,10,9右旋。可是,此时已不符合二叉排序树的规则。
究其原理,7的BF尾-2,10的BF为1,当符号不统一时(就是一正一负),必须进行双旋。先统一符号(图13),再进行旋转(图14)
image.png

image.png

image.png

image.png

8.插入8,先调整符号(图16),再旋转(图17)
image.png

image.png

image.png

代码实现
结点结构,多了个平衡因子bf。

//二叉树的二叉链表结点结构定义
//结点结构
typedef struct BiTNode{
    //结点数据
    int data;
    //结点的平衡因子
    int bf;
    //结点左右孩子指针
    struct BiTNode *lchild,*rchild;
    
}BiTNode,*BiTree;
//1.右旋
/*
 对以p为根的二叉排序树作右旋处理;
 处理之后p指向新的树根结点,即旋转处理之前的左子树的根结点;
 */
void R_Rotate(BiTree *p){
    BiTree L;
    //① L是p的左子树;
     L = (*p)->lchild;
    //② L的右子树作为p的左子树
    (*p)->lchild =  L->rchild;
    //③ 将p作为L的右子树
     L->rchild = (*p);
    //④ 将L替换原有p的根结点位置
    *p =  L;
    
}

/*
 2.左旋
 对以P为根的二叉排序树作左旋处理
 处理之后P指向新的树根结点,即旋转处理之前的右子树的根结点
 */

void L_Rotate(BiTree *p){
    BiTree R;
    //① R是p的右子树
    R = (*p)->rchild;
    //② R的左子树作为R的右子树
    (*p)->rchild = R->lchild;
    //③ 将p作为R的左子树;
    R->lchild = (*p);
    //④ 将R替换原有p的根结点的位置
    *p = R;
}

#define LH +1 /*  左高 */
#define EH 0  /*  等高 */
#define RH -1 /*  右高 */
/*
 3. 对指针T所指结点为根的二叉树作左平衡旋转处理,算法结束后,指针T指向平衡处理后新的根结点
 */
void LeftBalance(BiTree *T)
{
    BiTree L,Lr;
    
    //1.L指向T的左子树根结点
    L=(*T)->lchild;
    
    //2.检查T的左子树的平衡度,并作相应平衡处理
    switch(L->bf)
    {
        //① 新结点插入在T的左孩子的左子树上,要作单右旋处理(如图1-平衡二叉树右旋解释图)
        case LH:
            //L的平衡因子为LH,即为1时,表示它与根结点BF符合相同,则将它们(T,L)的BF值都改为EH(0)
            (*T)->bf=L->bf=EH;
            //对最小不平衡子树T进行右旋;
            R_Rotate(T);
            break;
            
        //② LH的平衡因子为RH(-1)时,它与跟结点的BF值符合相反.此时需要做双旋处理(2次旋转处理)
        //   新结点插入在T的左孩子的右子树上,要作 双旋处理
        case RH:
            
            //Lr指向T的左孩子的右子树根
            Lr=L->rchild;
            
            //修改T及其左孩子的平衡因子
            switch(Lr->bf)
            {
            
                case LH:
                    (*T)->bf=RH;
                    L->bf=EH;
                    break;
                    
                case EH:
                    (*T)->bf=L->bf=EH;
                    break;
                    
                case RH:
                    (*T)->bf=EH;
                    L->bf=LH;
                    break;
             }
            Lr->bf=EH;
            //对T的左子树作左旋平衡处理
            L_Rotate(&(*T)->lchild);
            //对T作右旋平衡处理
            R_Rotate(T);
    }
}

/*
 4. 右平衡树失衡处理
 对以指针T所指结点为根的二叉树作右平衡旋转处理
 本算法结束时,指针T指向新的根结点
 */
void RightBalance(BiTree *T)
{
    BiTree R,Rl;
    //1.R指向T的右子树根结点
    R=(*T)->rchild;
    
    //2. 检查T的右子树的平衡度,并作相应平衡处理
    switch(R->bf)
    {
        //① 新结点插入在T的右孩子的右子树上,要作单左旋处理
        case RH:
            (*T)->bf=R->bf=EH;
            L_Rotate(T);
            break;
        //新结点插入在T的右孩子的左子树上,要作双旋处理
        case LH:
            //Rl指向T的右孩子的左子树根
            Rl=R->lchild;
           
            //修改T及其右孩子的平衡因子
            switch(Rl->bf)
                {
                    case RH:
                        (*T)->bf=LH;
                        R->bf=EH;
                        break;
                    case EH:
                        (*T)->bf=R->bf=EH;
                        break;
                    case LH:
                        (*T)->bf=EH;
                        R->bf=RH;
                        break;
                }
            
            Rl->bf=EH;
            //对T的右子树作右旋平衡处理
            R_Rotate(&(*T)->rchild);
            //对T作左旋平衡处理
            L_Rotate(T);
    }
}

/*
 5. 平衡二叉树的插入实现
 若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否
 思路:
 1.如果T为空时,则创建一个新结点;
 2.如果T不为空,判断是否存在相同的结点.如果二叉树中存在相同结点,则不需要插入;
 3.如果新结点值e小于T的根结点值,则在T的左子树查找;
 -如果能在左子树中查找到,则不插入进去.返回False; 如果没有找到,则插入
 -插入成功taller为TRUE,说明新结点e已经插入进去; 此时需要判断T的平衡因子;
 -如果平衡因子是1,则说明左子树高于右子树,那么需要调用leftBalance进行左平衡旋转处理;
 -如果为0或者-1,则说明新插入的结点没有让整颗二叉排序树失去平衡性,只需要修改BF值即可;
 4.如果新结点值e大于T的根结点值,则在T的右子树查找;
 -如果能在右子树中查找到,则不插入进去.返回False; 如果没有找到,则插入
 -插入成功taller为TRUE,说明新结点e已经插入进去; 此时需要判断T的平衡因子;
 -如果平衡因子是-1,则说明右子树高于左子树,那么需要调用RightBalance进行右平衡旋转处理;
 -如果为0或者1,则说明新插入的结点没有让整颗二叉排序树失去平衡性,只需要修改BF值即可;
 */
Status InsertAVL(BiTree *T,int e,Status *taller)
{
    if(!*T)
    {   //1.插入新结点,树“长高”,置taller为TRUE
        //① 开辟一个新结点T;
        *T=(BiTree)malloc(sizeof(BiTNode));
        //② 对新结点T的data赋值,并且让其左右孩子指向为空,T的BF值为EH;
        (*T)->data=e;
        (*T)->lchild=(*T)->rchild=NULL;
        (*T)->bf=EH;
        //③ 新结点默认"长高"
        *taller=TRUE;
    }
    else
    {
        if (e==(*T)->data)
        {  //2.树中已存在和e有相同关键字的结点则不再插入
            *taller=FALSE;
            return FALSE;
        }
        if (e<(*T)->data)
        {
           //3.应继续在T的左子树中进行搜索
            if(!InsertAVL(&(*T)->lchild,e,taller))
                //未插入
                return FALSE;
            
            //4.已插入到T的左子树中且左子树“长高”
            if(*taller)
                //5.检查T的平衡度
                switch((*T)->bf)
            {
                case LH:
                    //原本左子树比右子树高,需要作左平衡处理
                    LeftBalance(T);
                    *taller=FALSE;
                    break;
                case EH:
                    //原本左、右子树等高,现因左子树增高而使树增高
                    (*T)->bf=LH;
                    *taller=TRUE;
                    break;
                case RH:
                    //原本右子树比左子树高,现左、右子树等高
                    (*T)->bf=EH;
                    *taller=FALSE;
                    break;
            }
        }
        else
        { //6.应继续在T的右子树中进行搜索
            //未插入
            if(!InsertAVL(&(*T)->rchild,e,taller))
                return FALSE;
            //已插入到T的右子树且右子树“长高”
            if(*taller)
                // 检查T的平衡度
                switch((*T)->bf)
            {
                //原本左子树比右子树高,现左、右子树等高
                case LH:
                    (*T)->bf=EH;
                    *taller=FALSE;
                    break;
                //原本左、右子树等高,现因右子树增高而使树增高
                case EH:
                    (*T)->bf=RH;
                    *taller=TRUE;
                    break;
                // 原本右子树比左子树高,需要作右平衡处理
                case RH:
                    RightBalance(T);
                    *taller=FALSE;
                    break;
            }
        }
    }
    return TRUE;
}

/*6.二叉排序树查找*/
Status SearchBST(BiTree T,int key,BiTree f, BiTree *p){
    
    if (!T)    /*  查找不成功 */
    {
        *p = f;
        return FALSE;
    }
    else if (key==T->data) /*  查找成功 */
    {
        *p = T;
        return TRUE;
    }
    else if (key<T->data)
        return SearchBST(T->lchild, key, T, p);  /*  在左子树中继续查找 */
    else
        return SearchBST(T->rchild, key, T, p);  /*  在右子树中继续查找 */
}

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。