edgeR中三种标准化方法TMM\UQ\RLE的比较

关于RNA-seq中的reads count标准化处理的方法汇总,请先看看这篇:
当我们在说RNA-seq reads count标准化时,其实在说什么?

本文集中讨论常用的edgeR包中三种标准化方法TMM\UQ\RLE的比较

英文原贴Normalisation methods implemented in edgeR

1.首先创建一个数据集

包含四个样品c1,c2是正常组,p1,p2是病人。共有50个转录本,每个样品内转录本counts的总数都是500个,前25个转录本在四个样品里都有表达,其中病人转录本的数目(20)是对照组(10)的两倍, 后25个转录本只在正常组中检测到。

#prepare example
control_1 <- rep(10, 50)
control_2 <- rep(10, 50)
patient_1 <- c(rep(20, 25),rep(0,25))
patient_2 <- c(rep(20, 25),rep(0,25))
 
df <- data.frame(c1=control_1,
                 c2=control_2,
                 p1=patient_1,
                 p2=patient_2)
 
head(df)
  c1 c2 p1 p2
1 10 10 20 20
2 10 10 20 20
3 10 10 20 20
4 10 10 20 20
5 10 10 20 20
6 10 10 20 20
 
tail(df)
   c1 c2 p1 p2
45 10 10  0  0
46 10 10  0  0
47 10 10  0  0
48 10 10  0  0
49 10 10  0  0
50 10 10  0  0
 
#equal depth
colSums(df)
 c1  c2  p1  p2 
500 500 500 500

数据集信息详见Robinson and Oshlack http://genomebiology.com/2010/11/3/R25

2.如果不做标准化处理

#load library
library(edgeR)
 
#create group vector
group <- c('control','control','patient','patient')
 
#create DGEList object
d <- DGEList(counts=df, group=group)
 
#check out the DGEList object
d
An object of class "DGEList"
$counts
  c1 c2 p1 p2
1 10 10 20 20
2 10 10 20 20
3 10 10 20 20
4 10 10 20 20
5 10 10 20 20
45 more rows ...
 
$samples
     group lib.size norm.factors
c1 control      500            1
c2 control      500            1
p1 patient      500            1
p2 patient      500            1
 
d <- DGEList(counts=df, group=group)
d <- estimateCommonDisp(d)
 
#perform the DE test
de <- exactTest(d)
 
#how many differentially expressed transcripts?
table(p.adjust(de$table$PValue, method="BH")<0.05)
 
TRUE
  50

可以看到:检测出共50个转录本有差异,即每个转录本都是差异表达的,假阳性很高。

3.TMM normalisation

TMM <- calcNormFactors(d, method="TMM")
TMM
An object of class "DGEList"
$counts
  c1 c2 p1 p2
1 10 10 20 20
2 10 10 20 20
3 10 10 20 20
4 10 10 20 20
5 10 10 20 20
45 more rows ...
 
$samples
     group lib.size norm.factors
c1 control      500    0.7071068
c2 control      500    0.7071068
p1 patient      500    1.4142136
p2 patient      500    1.4142136

我们看到对前25个转录本而言,正常组和病人之间没有差异 (10/0.7071068 (~14.14) 等于 20/1.4142136 (~14.14))。因此检测出有25个转录本存在差异(后25个转录本)

TMM <- estimateCommonDisp(TMM)
TMM <- exactTest(TMM)
table(p.adjust(TMM$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
   25    25

4.RLE normalisation

RLE
An object of class "DGEList"
$counts
  c1 c2 p1 p2
1 10 10 20 20
2 10 10 20 20
3 10 10 20 20
4 10 10 20 20
5 10 10 20 20
45 more rows ...
 
$samples
     group lib.size norm.factors
c1 control      500    0.7071068
c2 control      500    0.7071068
p1 patient      500    1.4142136
p2 patient      500    1.4142136
RLE <- estimateCommonDisp(RLE)
RLE <- exactTest(RLE)
table(p.adjust(RLE$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
   25    25

5.UQ normalisation

uq
An object of class "DGEList"
$counts
  c1 c2 p1 p2
1 10 10 20 20
2 10 10 20 20
3 10 10 20 20
4 10 10 20 20
5 10 10 20 20
45 more rows ...
 
$samples
     group lib.size norm.factors
c1 control      500    0.7071068
c2 control      500    0.7071068
p1 patient      500    1.4142136
p2 patient      500    1.4142136
 
uq <- estimateCommonDisp(uq)
uq <- exactTest(uq)
table(p.adjust(uq$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
   25    25

因为数据比较简单,这里三种标准化方法得到的结果一致,那么真实测序数据的情况又如何呢?

6.测试一套真实数据

my_url <-"[https://davetang.org/file/pnas_expression.txt](https://davetang.org/file/pnas_expression.txt)"

data <-read.table(my_url, header=TRUE, sep="\t")

dim(data)

[1] 37435     9

ensembl_ID lane1 lane2 lane3 lane4 lane5 lane6 lane8  len

1 ENSG00000215696     0     0     0     0     0     0     0  330

2 ENSG00000215700     0     0     0     0     0     0     0 2370

3 ENSG00000215699     0     0     0     0     0     0     0 1842

4 ENSG00000215784     0     0     0     0     0     0     0 2393

5 ENSG00000212914     0     0     0     0     0     0     0  384

6 ENSG00000212042     0     0     0     0     0     0     0   92

准备DGEList

rownames(d) <- data[,1]
group <- c(rep("Control",4),rep("DHT",3))
d <- DGEList(counts = d, group=group)
 
An object of class "DGEList"
$counts
                lane1 lane2 lane3 lane4 lane5 lane6 lane8
ENSG00000215696     0     0     0     0     0     0     0
ENSG00000215700     0     0     0     0     0     0     0
ENSG00000215699     0     0     0     0     0     0     0
ENSG00000215784     0     0     0     0     0     0     0
ENSG00000212914     0     0     0     0     0     0     0
37430 more rows ...
 
$samples
        group lib.size norm.factors
lane1 Control   978576            1
lane2 Control  1156844            1
lane3 Control  1442169            1
lane4 Control  1485604            1
lane5     DHT  1823460            1
lane6     DHT  1834335            1
lane8     DHT   681743            1

还是先不做标准化处理

no_norm <- exactTest(no_norm)
table(p.adjust(no_norm$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
33404  4031 

TMM normalisation

TMM <- calcNormFactors(d, method="TMM")
TMM
An object of class "DGEList"
$counts
                lane1 lane2 lane3 lane4 lane5 lane6 lane8
ENSG00000215696     0     0     0     0     0     0     0
ENSG00000215700     0     0     0     0     0     0     0
ENSG00000215699     0     0     0     0     0     0     0
ENSG00000215784     0     0     0     0     0     0     0
ENSG00000212914     0     0     0     0     0     0     0
37430 more rows ...
 
$samples
        group lib.size norm.factors
lane1 Control   978576    1.0350786
lane2 Control  1156844    1.0379515
lane3 Control  1442169    1.0287815
lane4 Control  1485604    1.0222095
lane5     DHT  1823460    0.9446243
lane6     DHT  1834335    0.9412769
lane8     DHT   681743    0.9954283
 
TMM <- estimateCommonDisp(TMM)
TMM <- exactTest(TMM)
table(p.adjust(TMM$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
33519  3916

RLE

RLE <- calcNormFactors(d, method="RLE")
RLE
An object of class "DGEList"
$counts
                lane1 lane2 lane3 lane4 lane5 lane6 lane8
ENSG00000215696     0     0     0     0     0     0     0
ENSG00000215700     0     0     0     0     0     0     0
ENSG00000215699     0     0     0     0     0     0     0
ENSG00000215784     0     0     0     0     0     0     0
ENSG00000212914     0     0     0     0     0     0     0
37430 more rows ...
 
$samples
        group lib.size norm.factors
lane1 Control   978576    1.0150010
lane2 Control  1156844    1.0236675
lane3 Control  1442169    1.0345426
lane4 Control  1485604    1.0399724
lane5     DHT  1823460    0.9706692
lane6     DHT  1834335    0.9734955
lane8     DHT   681743    0.9466713
 
RLE <- estimateCommonDisp(RLE)
RLE <- exactTest(RLE)
table(p.adjust(RLE$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
33465  3970

the upper quartile method

uq <- calcNormFactors(d, method="upperquartile")
uq
An object of class "DGEList"
$counts
                lane1 lane2 lane3 lane4 lane5 lane6 lane8
ENSG00000215696     0     0     0     0     0     0     0
ENSG00000215700     0     0     0     0     0     0     0
ENSG00000215699     0     0     0     0     0     0     0
ENSG00000215784     0     0     0     0     0     0     0
ENSG00000212914     0     0     0     0     0     0     0
37430 more rows ...
 
$samples
        group lib.size norm.factors
lane1 Control   978576    1.0272514
lane2 Control  1156844    1.0222982
lane3 Control  1442169    1.0250528
lane4 Control  1485604    1.0348864
lane5     DHT  1823460    0.9728534
lane6     DHT  1834335    0.9670858
lane8     DHT   681743    0.9541011
 
uq <- estimateCommonDisp(uq)
uq <- exactTest(uq)
table(p.adjust(uq$table$PValue, method="BH")<0.05)
 
FALSE  TRUE
33466  3969

以上四种处理方法找到的差异基因取交集,可以看出不做标准化处理会得到405个假阳性和342个假阴性的转录本

library(gplots)
 
get_de <- function(x, pvalue){
  my_i <- p.adjust(x$PValue, method="BH") < pvalue
  row.names(x)[my_i]
}
 
my_de_no_norm <- get_de(no_norm$table, 0.05)
my_de_tmm <- get_de(TMM$table, 0.05)
my_de_rle <- get_de(RLE$table, 0.05)
my_de_uq <- get_de(uq$table, 0.05)
 
gplots::venn(list(no_norm = my_de_no_norm, TMM = my_de_tmm, RLE = my_de_rle, UQ = my_de_uq))
不做标准化会得到405个假阳性和342个假阴性的转录本

三种标准化方法找到的差异基因大部分是一致的

gplots::venn(list(TMM = my_de_tmm, RLE = my_de_rle, UQ = my_de_uq))
1.png

小结

三种标准化方法效果类似,处理结果都比不做标准化要好
The normalisation factors were quite similar between all normalisation methods, which is why the results of the differential expression were quite concordant. Most methods down sized the DHT samples with a normalisation factor of less than one to account for the larger library sizes of these samples.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容