支持向量机的核函数

什么是核函数?核函数的作用是什么?怎么样把核函数和支持向量机结合起来?怎么样使用支持向量机来解决分类问题?怎么样在逻辑回归算法,支持向量机,神经网络这三个分类算法里选择使用哪个算法来解决实际问题?本文就是回答这些疑问的。

核函数

什么是核函数?核函数是特征转换函数。这是非常抽象的描述,这一节的内容就是为了理解这个抽象的概念的。

从多项式说起

Non-linear Decsion Boundary
Non-linear Decsion Boundary

假设我们有一个非线性分界线的分类问题,有两个特征 $x_1, x_2$ ,回顾逻辑回归算法里的知识,我们可以使用多项式来增加特征,以便描述出非线性分界线。当:

多项式

时,我们预测出 $y=1$。上述公式只写了二阶多项式,我们可以写到更高阶的多项式来模拟复杂的分界线。我们改写一下上面的公式:

改写多项式

这里,$f_1=x_1, f_2 = x_2, f_3 = x_1 x_2, f_4 = x_1^2, f_5 = x_2^2 ...$ 。

那么问题来了,除了多项式外,有没有更好地途径把特征 $x_1, x_2$ 映射到特征 $f_1, f_2, f_3, f_4, f_5 ...$ 呢?

相似性函数

我们在二维坐标上选择三个标记点 $l^{(i)}$ ,针对一个训练样例 $x$,我们使用相似性函数来定义新的特征:

Similarity Function

如下图所示,当我们选择三个标记点 $l^{(1)}, l^{(2)}, l^{(3)}$ 时,针对一个只有两个特征的训练样例 $(x_1, x_2)$,通过我们的相似性函数映射后,我们将得到 $f_1, f_2, f_3$ 三个新特征。

landmark
landmark

相似性函数的物理意义

$| x - l^{(i)} |^2$ 在二维平面上的物理意义是点 $x$ 到标记点 $l^{(i)}$ 的距离。从向量角度来理解,个是向量的范数。

高斯核函数

高斯核函数

我们把上面的相似性函数称为高斯核函数,它的主要作用就是把输入特征映射到另外一组特征上。当 $x$ 离标记点 $l^{(i)}$ 很近的时候,这两个点间的距离接近于 0 ,故 $f_i$ 接近于 1 。当 $x$ 离标记点 $l^{(i)}$ 很远的时候,这两个点间的距离接近于无穷大,故 $f_i$ 接近于 0 。

理解相似性函数

假设我们选择了三个标识点 $l^{(1)}, l^{(2)}, l^{(3)}$ ,映射出三个新特征 $f_1, f_2, f_3$ ,那么当:

Paste_Image.png

时,我们预测为 1。假设我们训练出来的参数为 $\theta_0 = -0.5, \theta_1 = 1, \theta_2 = 1, \theta_3 = 0$ ,那么当某个测试样例点 $x$ 靠近 $l^{(1)}$ ,但远离 $l^{(2)}, l^{(3)}$ 时,我们可以得出:

Paste_Image.png

即我们把测试样例点 $x$ 归类到 $y=1$ 这个类别里。相同的道理,假设某个测试样例 $x$ 离三个标记点都很远,那么:

Paste_Image.png
prediction
prediction

这样我们得出结论,把 $x$ 归类到 $y=0$ 这个类别里。使用相同的方法,最终我们针对所有的测试样例进行归类。

带核函数的支持向量机算法

选择标记点

Select Landmark
Select Landmark

定义标记点 (landmark) 的一个很自然的方法是直接把 landmark 定义在训练数据集的训练样例上,即 $l{(i)}=x{(i)}$。那么给定一个新的交叉验证数据集或测试数据集里的样例 $x$,它与 landmark 的相似性函数,即高斯核函数如下

Similarity

针对训练样例,也满足上述核函数。由于我们选择 landmark 与训练样例重合,所以针对训练样例 $x^{(i)}$ 有 $f_i=1$ 。

计算预测值

假如我们已经算出了 $\theta$,那么当 $\theta^Tf >= 0$ 时,预测值为 1,反之为 0。

计算参数

根据 SVM 的成本函数,由于我们把 $f$ 代替 $x$ 作为新的特征,所以我们可以通过最小化下面的函数来计算得出参数 $\theta$

Cost Function

针对上述公式,实际上 $m=n$,因为 $f$ 是由训练数据集 $x^{(i)}$ 定义,即 $f$ 是一个 m 维的向量。

支持向量机算法的参数

  1. C 值越大,越容易造成过拟合,即 lower bias, higher variance. 当 C 值越小,越容易造成欠拟合,即 higher bias, lower variance。
  2. $\sigma^2$ 越大,高斯核函数的变化越平缓,会导致 higher bias, lower variance。当 $\sigma^2$ 越小,高斯核函数变化越快,会导致 lower bias, higher variance。

实践中的 SVM

一般情况下,我们使用 SVM 库 (liblinear, libsvm ...) 来求解 SVM 算法的参数 $\theta$,而不是自己去实现 SVM 算法。在使用这些库的时候,我们要做的步骤如下

  • 选择参数 C
  • 选择核函数
    • 可以支持空的核函数,即线性核函数 (linear kernel)。Predict "y = 1" if $\theta^Tx >= 0$。
    • 高斯核函数 $f_i = exp \left( - \frac{| x - l^{(i)} |2}{2\sigma2} \right)$,这个时候需要选择合适的参数 $\sigma^2$。

在使用第三方算法的时候,一般需要我们提供核函数的实现。输入参数是 $x_1, x_2$,输出为新的特征值 $f_i$。另外一个需要注意的点是,如果使用高斯核函数,在实现核函数时,需要对参数进行缩放,以便加快算法收敛速度。

多类别的分类算法

这个和逻辑回归里介绍的 one-vs.-all 一样。可以先针对一个类别和其他类别做二元分类,逐个分类出所有的类别。这样我们得到一组参数。假如,我们有 K 个类别,那么我们最终将得到 $\theta^{(1)}, \theta^{(2)}, \theta^{(3)} ... \theta^{(K)}$ 个参数。

算法选择

逻辑回归和 SVM 都可以用来解决分类问题,他们适用的场景有些区别。

假设 n 是特征个数;m 是训练数据集的样例个数。一般可以按照下面的规则来选择算法。

如果 n 相对 m 来说比较大。比如 n = 10,000; m = 10 - 1000,如文本处理问题,这个时候使用逻辑回归或无核函数的 SVM 算法。
如果 n 比较小,m 中等大小。比如 n = 1 - 1000; m = 10 - 10,000。那么可以使用高斯核函数的 SVM 算法。
如果 n 比较小,m 比较大。比如 n = 1 - 1000; m = 50,000+ 。那么一般需要增加特征,并且使用逻辑回归或无核函数的 SVM 算法。

以上的所有情况都可以使用神经网络来解决。但训练神经网络的计算成本比较高。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容