Elasticsearch: 权威指南(三)

路由一个文档到一个分片中

路由公式

shard = hash(routing) % number_of_primary_shards

routing 是一个可变值,默认是文档的 _id ,也可以设置成一个自定义的值。 routing 通过 hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到 余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。

这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了。

主分片和副本分片如何交互

新建、索引和删除文档

image.png

以下是在主副分片和任何副本分片上面 成功新建,索引和删除文档所需要的步骤顺序:

  1. 客户端向 Node 1 发送新建、索引或者删除请求。
  2. 节点使用文档的 _id 确定文档属于分片 0 。请求会被转发到 Node 3,因为分片 0 的主分片目前被分配在 Node 3 上。
  3. Node 3 在主分片上面执行请求。如果成功了,它将请求并行转发到 Node 1 和 Node 2 的副本分片上。一旦所有的副本分片都报告成功, Node 3 将向协调节点报告成功,协调节点向客户端报告成功。

有一些可选的请求参数允许您影响这个过程,可能以数据安全为代价提升性能。这些选项很少使用,因为Elasticsearch已经很快,但是为了完整起见,在这里阐述如下

consistency

consistency,即一致性。在默认设置下,即使仅仅是在试图执行一个操作之前,主分片都会要求 必须要有 规定数量(quorum)(或者换种说法,也即必须要有大多数)的分片副本处于活跃可用状态,才会去执行操作(其中分片副本可以是主分片或者副本分片)。这是为了避免在发生网络分区故障(network partition)的时候进行操作,进而导致数据不一致。规定数量即:

int( (primary + number_of_replicas) / 2 ) + 1
consistency 参数的值可以设为 one (只要主分片状态 ok 就允许执行操作),all(必须要主分片和所有副本分片的状态没问题才允许执行操作), 或 quorum 。默认值为 quorum , 即大多数的分片副本状态没问题就允许执行操作。

注意,规定数量 的计算公式中 number_of_replicas 指的是在索引设置中的设定副本分片数,而不是指当前处理活动状态的副本分片数。如果你的索引设置中指定了当前索引拥有三个副本分片,那规定数量的计算结果即:

int( (primary + 3 replicas) / 2 ) + 1 = 3
如果此时你只启动两个节点,那么处于活跃状态的分片副本数量就达不到规定数量,也因此您将无法索引和删除任何文档。

timeout

如果没有足够的副本分片会发生什么? Elasticsearch会等待,希望更多的分片出现。默认情况下,它最多等待1分钟。 如果你需要,你可以使用 timeout 参数 使它更早终止: 100 100毫秒,30s 是30秒。

搜索

搜索(search) 可以做到:

  • 在类似于 gender 或者 age 这样的字段上使用结构化查询,join_date 这样的字段上使用排序,就像SQL的结构化查询一样。
  • 全文检索,找出所有匹配关键字的文档并按照相关性(relevance) 排序后返回结果。
  • 以上二者兼而有之。
映射(Mapping)

描述数据在每个字段内如何存储

分析(Analysis)

全文是如何处理使之可以被搜索的

领域特定查询语言(Query DSL)

Elasticsearch 中强大灵活的查询语言
以上提到的每个点都是一个大话题,我们将在 深入搜索 一章详细阐述它们。本章节我们将介绍这三点的一些基本概念——仅仅帮助你大致了解搜索是如何工作的。

我们将使用最简单的形式开始介绍 search API。

空搜索

搜索API的最基础的形式是没有指定任何查询的空搜索,它简单地返回集群中所有索引下的所有文档:

GET /_search

多索引,多类型

然而,经常的情况下,你想在一个或多个特殊的索引并且在一个或者多个特殊的类型中进行搜索。我们可以通过在URL中指定特殊的索引和类型达到这种效果,如下所示:

/_search
在所有的索引中搜索所有的类型
 /gb/_search
在 gb 索引中搜索所有的类型
 /gb,us/_search
在 gb 和 us 索引中搜索所有的文档
 /g*,u*/_search
在任何以 g 或者 u 开头的索引中搜索所有的类型
 /gb/user/_search
在 gb 索引中搜索 user 类型
 /gb,us/user,tweet/_search
在 gb 和 us 索引中搜索 user 和 tweet 类型
 /_all/user,tweet/_search
在所有的索引中搜索 user 和 tweet 类型

当在单一的索引下进行搜索的时候,Elasticsearch 转发请求到索引的每个分片中,可以是主分片也可以是副本分片,然后从每个分片中收集结果。多索引搜索恰好也是用相同的方式工作的—​只是会涉及到更多的分片。

分页

在之前的 空搜索 中说明了集群中有 14 个文档匹配了(empty)query 。 但是在 hits 数组中只有 10 个文档。如何才能看到其他的文档?

和 SQL 使用 LIMIT 关键字返回单个 page 结果的方法相同,Elasticsearch 接受 from 和 size 参数:

size

显示应该返回的结果数量,默认是 10

from

显示应该跳过的初始结果数量,默认是 0
如果每页展示 5 条结果,可以用下面方式请求得到 1 到 3 页的结果

GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10

可以看到,在分布式系统中,对结果排序的成本随分页的深度成指数上升。这就是 web 搜索引擎对任何查询都不要返回超过 1000 个结果的原因。

核心简单域类型

Elasticsearch 支持如下简单域类型:

  • 字符串: string
  • 整数 : byte, short, integer, long
  • 浮点数: float, double
  • 布尔型: boolean
  • 日期: date

查看映射

通过 /_mapping ,我们可以查看 Elasticsearch 在一个或多个索引中的一个或多个类型的映射。在 开始章节 ,我们已经取得索引 gb 中类型 tweet 的映射:

GET /gb/_mapping/tweet

Elasticsearch 根据我们索引的文档,为域(称为 属性 )动态生成的映射。

{
   "gb": {
      "mappings": {
         "tweet": {
            "properties": {
               "date": {
                  "type": "date",
                  "format": "strict_date_optional_time||epoch_millis"
               },
               "name": {
                  "type": "string"
               },
               "tweet": {
                  "type": "string"
               },
               "user_id": {
                  "type": "long"
               }
            }
         }
      }
   }
}

自定义域映射

  • 全文字符串域和精确值字符串域的区别
  • 使用特定语言分析器
  • 优化域以适应部分匹配
  • 指定自定义数据格式
  • 还有更多
    域最重要的属性是 type 。对于不是 string 的域,你一般只需要设置 type :
{
    "number_of_clicks": {
        "type": "integer"
    }
}

默认, string 类型域会被认为包含全文。就是说,它们的值在索引前,会通过一个分析器,针对于这个域的查询在搜索前也会经过一个分析器。

string 域映射的两个最重要属性是 index 和 analyzer 。

index

index 属性控制怎样索引字符串。它可以是下面三个值:

  • analyzed
    首先分析字符串,然后索引它。换句话说,以全文索引这个域。
  • not_analyzed
    索引这个域,所以它能够被搜索,但索引的是精确值。不会对它进行分析。
  • no
    不索引这个域。这个域不会被搜索到。

string 域 index 属性默认是 analyzed 。如果我们想映射这个字段为一个精确值,我们需要设置它为 not_analyzed :

{
    "tag": {
        "type":     "string",
        "index":    "not_analyzed"
    }
}

其他简单类型(例如 long , double , date 等)也接受 index 参数,但有意义的值只有 no 和 not_analyzed , 因为它们永远不会被分析。

analyzer

对于 analyzed 字符串域,用 analyzer 属性指定在搜索和索引时使用的分析器。默认, Elasticsearch 使用 standard 分析器, 但你可以指定一个内置的分析器替代它,例如 whitespace 、 simple 和 english:

{
    "tweet": {
        "type":     "string",
        "analyzer": "english"
    }
}

更新映射

当你首次创建一个索引的时候,可以指定类型的映射。你也可以使用 /_mapping 为新类型(或者为存在的类型更新映射)增加映射。

尽管你可以 增加 一个存在的映射,你不能 修改 存在的域映射。如果一个域的映射已经存在,那么该域的数据可能已经被索引。如果你意图修改这个域的映射,索引的数据可能会出错,不能被正常的搜索。

我们可以更新一个映射来添加一个新域,但不能将一个存在的域从 analyzed 改为 not_analyzed
为了描述指定映射的两种方式,我们先删除 gd 索引:

DELETE /gb

然后创建一个新索引,指定 tweet 域使用 english 分析器:

PUT /gb 
{
  "mappings": {
    "tweet" : {
      "properties" : {
        "tweet" : {
          "type" :    "string",
          "analyzer": "english"
        },
        "date" : {
          "type" :   "date"
        },
        "name" : {
          "type" :   "string"
        },
        "user_id" : {
          "type" :   "long"
        }
      }
    }
  }
}

稍后,我们决定在 tweet 映射增加一个新的名为 tag 的 not_analyzed 的文本域,使用 _mapping :

PUT /gb/_mapping/tweet
{
  "properties" : {
    "tag" : {
      "type" :    "string",
      "index":    "not_analyzed"
    }
  }
}

注意,我们不需要再次列出所有已存在的域,因为无论如何我们都无法改变它们。新域已经被合并到存在的映射中。

复杂核心域类型

除了我们提到的简单标量数据类型, JSON 还有 null 值,数组,和对象,这些 Elasticsearch 都是支持的。

多值域

很有可能,我们希望 tag 域包含多个标签。我们可以以数组的形式索引标签:

{ "tag": [ "search", "nosql" ]}

对于数组,没有特殊的映射需求。任何域都可以包含0、1或者多个值,就像全文域分析得到多个词条。

这暗示 数组中所有的值必须是相同数据类型的 。你不能将日期和字符串混在一起。如果你通过索引数组来创建新的域,Elasticsearch 会用数组中第一个值的数据类型作为这个域的 类型 。

空域

当然,数组可以为空。这相当于存在零值。 事实上,在 Lucene 中是不能存储 null 值的,所以我们认为存在 null 值的域为空域。
面三种域被认为是空的,它们将不会被索引:

"null_value":               null,
"empty_array":              [],
"array_with_null_value":    [ null ]

多层级对象

我们讨论的最后一个 JSON 原生数据类是 对象 -- 在其他语言中称为哈希,哈希 map,字典或者关联数组。

内部对象 经常用于嵌入一个实体或对象到其它对象中。例如,与其在 tweet 文档中包含 user_name 和 user_id 域,我们也可以这样写:

{
    "tweet":            "Elasticsearch is very flexible",
    "user": {
        "id":           "@johnsmith",
        "gender":       "male",
        "age":          26,
        "name": {
            "full":     "John Smith",
            "first":    "John",
            "last":     "Smith"
        }
    }
}

内部对象的映射

Elasticsearch 会动态监测新的对象域并映射它们为 对象 ,在 properties 属性下列出内部域:

{
  "gb": {
    "tweet": { 
      "properties": {
        "tweet":            { "type": "string" },
        "user": { 
          "type":             "object",
          "properties": {
            "id":           { "type": "string" },
            "gender":       { "type": "string" },
            "age":          { "type": "long"   },
            "name":   { 
              "type":         "object",
              "properties": {
                "full":     { "type": "string" },
                "first":    { "type": "string" },
                "last":     { "type": "string" }
              }
            }
          }
        }
      }
    }
  }
}

user 和 name 域的映射结构与 tweet 类型的相同。事实上, type 映射只是一种特殊的 对象 映射,我们称之为 根对象 。除了它有一些文档元数据的特殊顶级域,例如 _source 和 _all 域,它和其他对象一样。

内部对象是如何索引的

Lucene 不理解内部对象。 Lucene 文档是由一组键值对列表组成的。为了能让 Elasticsearch 有效地索引内部类,它把我们的文档转化成这样:

{
    "tweet":            [elasticsearch, flexible, very],
    "user.id":          [@johnsmith],
    "user.gender":      [male],
    "user.age":         [26],
    "user.name.full":   [john, smith],
    "user.name.first":  [john],
    "user.name.last":   [smith]
}

内部域 可以通过名称引用(例如, first )。为了区分同名的两个域,我们可以使用全 路径 (例如, user.name.first ) 或 type 名加路径( tweet.user.name.first )。

在前面简单扁平的文档中,没有 user 和 user.name 域。Lucene 索引只有标量和简单值,没有复杂数据结构。

内部对象数组

最后,考虑包含内部对象的数组是如何被索引的。 假设我们有个 followers 数组:

{
    "followers": [
        { "age": 35, "name": "Mary White"},
        { "age": 26, "name": "Alex Jones"},
        { "age": 19, "name": "Lisa Smith"}
    ]
}

这个文档会像我们之前描述的那样被扁平化处理,结果如下所示:

{
    "followers.age":    [19, 26, 35],
    "followers.name":   [alex, jones, lisa, smith, mary, white]
}

{age: 35}{name: Mary White} 之间的相关性已经丢失了,因为每个多值域只是一包无序的值,而不是有序数组。这足以让我们问,“有一个26岁的追随者?”

但是我们不能得到一个准确的答案:“是否有一个26岁 名字叫 Alex Jones 的追随者?”

相关内部对象被称为 nested 对象,可以回答上面的查询,我们稍后会在嵌套对象中介绍它。

空查询

查询可以使用post,也可以使用get

GET /_search
{
  "from": 30,
  "size": 10
}

一个带请求体的 GET 请求?
某些特定语言(特别是 JavaScript)的 HTTP 库是不允许 GET 请求带有请求体的。事实上,一些使用者对于 GET 请求可以带请求体感到非常的吃惊。
而事实是这个RFC文档 RFC 7231— 一个专门负责处理 HTTP 语义和内容的文档 — 并没有规定一个带有请求体的 GET 请求应该如何处理!结果是,一些 HTTP 服务器允许这样子,而有一些 — 特别是一些用于缓存和代理的服务器 — 则不允许。
对于一个查询请求,Elasticsearch 的工程师偏向于使用 GET 方式,因为他们觉得它比 POST能更好的描述信息检索(retrieving information)的行为。然而,因为带请求体的 GET 请求并不被广泛支持,所以 search API同时支持 POST 请求:

POST /_search
{
  "from": 30,
  "size": 10
}

类似的规则可以应用于任何需要带请求体的 GET API。

最重要的查询

match_all 查询

atch_all 查询简单的匹配所有文档。在没有指定查询方式时,它是默认的查询:

{ "match_all": {}}
match 查询

无论你在任何字段上进行的是全文搜索还是精确查询,match 查询是你可用的标准查询。

如果你在一个全文字段上使用 match 查询,在执行查询前,它将用正确的分析器去分析查询字符串:

{ "match": { "tweet": "About Search" }}

如果在一个精确值的字段上使用它,例如数字、日期、布尔或者一个 not_analyzed 字符串字段,那么它将会精确匹配给定的值:

{ "match": { "age":    26           }}
{ "match": { "date":   "2014-09-01" }}
{ "match": { "public": true         }}
{ "match": { "tag":    "full_text"  }}

对于精确值的查询,你可能需要使用 filter 语句来取代 query,因为 filter 将会被缓存。接下来,我们将看到一些关于 filter 的例子。

不像我们在 轻量 搜索 章节介绍的字符串查询(query-string search), match 查询不使用类似 +user_id:2 +tweet:search 的查询语法。它只是去查找给定的单词。这就意味着将查询字段暴露给你的用户是安全的;你需要控制那些允许被查询字段,不易于抛出语法异常。

multi_match 查询

multi_match 查询可以在多个字段上执行相同的 match 查询:

{
    "multi_match": {
        "query":    "full text search",
        "fields":   [ "title", "body" ]
    }
}
range 查询
{
    "range": {
        "age": {
            "gte":  20,
            "lt":   30
        }
    }
}

被允许的操作符如下:

  • gt
    大于
  • gte
    大于等于
  • lt
    小于
  • lte
    小于等于
term 查询

term 查询被用于精确值匹配,这些精确值可能是数字、时间、布尔或者那些 not_analyzed 的字符串:

{ "term": { "age":    26           }}
{ "term": { "date":   "2014-09-01" }}
{ "term": { "public": true         }}
{ "term": { "tag":    "full_text"  }}

term 查询对于输入的文本不 分析 ,所以它将给定的值进行精确查询。

terms 查询

terms 查询和 term 查询一样,但它允许你指定多值进行匹配。如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件:

{ "terms": { "tag": [ "search", "full_text", "nosql" ] }}

和 term 查询一样,terms 查询对于输入的文本不分析。它查询那些精确匹配的值(包括在大小写、重音、空格等方面的差异)。

exists 查询和 missing 查询

exists 查询和 missing 查询被用于查找那些指定字段中有值 (exists) 或无值 (missing) 的文档。这与SQL中的 IS_NULL (missing) 和 NOT IS_NULL (exists) 在本质上具有共性:

{
    "exists":   {
        "field":    "title"
    }
}

组合多查询

现实的查询需求从来都没有那么简单;它们需要在多个字段上查询多种多样的文本,并且根据一系列的标准来过滤。为了构建类似的高级查询,你需要一种能够将多查询组合成单一查询的查询方法。

你可以用 bool 查询来实现你的需求。这种查询将多查询组合在一起,成为用户自己想要的布尔查询。它接收以下参数:

must

文档 必须 匹配这些条件才能被包含进来。

must_not

文档 必须不 匹配这些条件才能被包含进来。

should

如果满足这些语句中的任意语句,将增加 _score ,否则,无任何影响。它们主要用于修正每个文档的相关性得分。

filter

必须 匹配,但它以不评分、过滤模式来进行。这些语句对评分没有贡献,只是根据过滤标准来排除或包含文档。

由于这是我们看到的第一个包含多个查询的查询,所以有必要讨论一下相关性得分是如何组合的。每一个子查询都独自地计算文档的相关性得分。一旦他们的得分被计算出来, bool 查询就将这些得分进行合并并且返回一个代表整个布尔操作的得分。

下面的查询用于查找 title 字段匹配 how to make millions 并且不被标识为 spam 的文档。那些被标识为 starred 或在2014之后的文档,将比另外那些文档拥有更高的排名。如果 两者 都满足,那么它排名将更高:

{
    "bool": {
        "must":     { "match": { "title": "how to make millions" }},
        "must_not": { "match": { "tag":   "spam" }},
        "should": [
            { "match": { "tag": "starred" }},
            { "range": { "date": { "gte": "2014-01-01" }}}
        ]
    }
}

如果没有 must 语句,那么至少需要能够匹配其中的一条 should 语句。但,如果存在至少一条 must 语句,则对 should 语句的匹配没有要求。

验证查询

查询可以变得非常的复杂,尤其和不同的分析器与不同的字段映射结合时,理解起来就有点困难了。不过 validate-query API 可以用来验证查询是否合法。

GET /gb/tweet/_validate/query
{
   "query": {
      "tweet" : {
         "match" : "really powerful"
      }
   }
}

以上 validate 请求的应答告诉我们这个查询是不合法的:

{
  "valid" :         false,
  "_shards" : {
    "total" :       1,
    "successful" :  1,
    "failed" :      0
  }
}

理解错误信息

为了找出 查询不合法的原因,可以将 explain 参数 加到查询字符串中:

GET /gb/tweet/_validate/query?explain 
{
   "query": {
      "tweet" : {
         "match" : "really powerful"
      }
   }
}

很明显,我们将查询类型(match)与字段名称 (tweet)搞混了:

{
  "valid" :     false,
  "_shards" :   { ... },
  "explanations" : [ {
    "index" :   "gb",
    "valid" :   false,
    "error" :   "org.elasticsearch.index.query.QueryParsingException:
                 [gb] No query registered for [tweet]"
  } ]
}

理解查询语句

对于合法查询,使用 explain 参数将返回可读的描述,这对准确理解 Elasticsearch 是如何解析你的 query 是非常有用的:

GET /_validate/query?explain
{
   "query": {
      "match" : {
         "tweet" : "really powerful"
      }
   }
}

我们查询的每一个 index 都会返回对应的 explanation ,因为每一个 index 都有自己的映射和分析器:

{
  "valid" :         true,
  "_shards" :       { ... },
  "explanations" : [ {
    "index" :       "us",
    "valid" :       true,
    "explanation" : "tweet:really tweet:powerful"
  }, {
    "index" :       "gb",
    "valid" :       true,
    "explanation" : "tweet:realli tweet:power"
  } ]
}

从 explanation 中可以看出,匹配 really powerful 的 match 查询被重写为两个针对 tweet 字段的 single-term 查询,一个single-term查询对应查询字符串分出来的一个term。

当然,对于索引 us ,这两个 term 分别是 really 和 powerful ,而对于索引 gb ,term 则分别是 realli 和 power 。之所以出现这个情况,是由于我们将索引 gb 中 tweet 字段的分析器修改为 english 分析器。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351