转自 https://www.cnblogs.com/teagnes/p/6112019.html
其实在很久之前洒家刚刚搞hadoop的时候就遇到了这个问题,只是那个时候只知道读取hdfs上的文本文件的时候一定要是utf8编码,不然就会出现乱码,后来倒也没遇到这个问题,毕竟平时的数据都是从hive里来的,那时候也不懂这是为什么,最近又遇到了,有感于斯,从新总结一下,如何在hadoop和spark上处理读取GBK编码文件
首先来看一下为什么会出现这个问题, 下面是一个最简单的spark的wordcount程序,sc.textFile(filePath)方法从文本文件创建RDD,传入文件路径filePath,查看textFile方法, 可以看到,实际上调用了TextInputformat类来解析文本文件,熟悉hadoop的一定知道,mapreudce默认的解析文件文件的类就是TextInputformat,并返回了K V键值对
object Wordcount {
def main(args: Array[String]) {
val filePath = "";
val conf = new SparkConf().setAppName("WordCountApp")
val sc = new SparkContext(conf)
val line = sc.textFile(filePath)
line.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect.foreach(println)
sc.stop
}
}
def textFile(
path: String,
minPartitions: Int = defaultMinPartitions): RDD[String] = withScope {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map(pair => pair._2.toString).setName(path)
}
继续看TextInputFormat源码,TextInputFormat有两个作用。
一是对输入文件分片,mapreduce会为每一个分片都起动一个map任务来处理,分片的任务由TextInputFormat的父类FileInputFormat完成,这里就不做深究了, TextInputFormat中只有读取数据的方法。
二是从分片的数据,生成k v键值对也就是Recordreader ,createRecordReader方法不断的生成Recordreader对像并交给map端去处理 ,下面的代码中在delimiter.getBytes(Charsets.UTF_8)设置了字符集,很可惜这里并不是读取文件时使用的,而是指定了redcord的分割符,默认情况下是每一行生成一个record,一般情况下我们不需要使用到这个参数,只有在设置多行作为一个record输入的时候才会用到,可以通过设置参数“textinputformat.record.delimiter”来设置,那我们是不是可以在代码中指定我们的读取文件的字符集呢?
package org.apache.hadoop.mapreduce.lib.input;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.io.compress.SplittableCompressionCodec;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import com.google.common.base.Charsets;
/** An {@link InputFormat} for plain text files. Files are broken into lines.
* Either linefeed or carriage-return are used to signal end of line. Keys are
* the position in the file, and values are the line of text.. */
@InterfaceAudience.Public
@InterfaceStability.Stable
public class TextInputFormat extends FileInputFormat<LongWritable, Text> {
@Override
public RecordReader<LongWritable, Text>
createRecordReader(InputSplit split,
TaskAttemptContext context) {
String delimiter = context.getConfiguration().get(
"textinputformat.record.delimiter");
byte[] recordDelimiterBytes = null;
if (null != delimiter)
recordDelimiterBytes = delimiter.getBytes(Charsets.UTF_8);
return new LineRecordReader(recordDelimiterBytes);
}
@Override
protected boolean isSplitable(JobContext context, Path file) {
final CompressionCodec codec =
new CompressionCodecFactory(context.getConfiguration()).getCodec(file);
if (null == codec) {
return true;
}
return codec instanceof SplittableCompressionCodec;
}
}
继续看LineRecordReader类,查看其中的nextKeyValue方法,该方法是具体生成k v记录时候使用的,这里有两个很意思的点,需要注意。
一是skipUtfByteOrderMark()方法,该方法处理了当文件是有bom的utf-8格式的时候,读取程序自动跳过bom,有待具体测试一下
二是如果我们读到的行跨块了怎么处理?因为hdfs是按文件的大小来切分文件的,难免一行数据被切分到两个块中去了,这里有相应的处理的逻辑,这里就不再详细说明了
public boolean nextKeyValue() throws IOException {
if (key == null) {
key = new LongWritable();
}
key.set(pos);
if (value == null) {
value = new Text();
}
int newSize = 0;
// We always read one extra line, which lies outside the upper
// 具体读取记录的方法split limit i.e. (end - 1)
while (getFilePosition() <= end || in.needAdditionalRecordAfterSplit()) {
if (pos == 0) {
newSize = skipUtfByteOrderMark();
} else {
newSize = in.readLine(value, maxLineLength, maxBytesToConsume(pos));
pos += newSize;
}
if ((newSize == 0) || (newSize < maxLineLength)) {
break;
}
// line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos " +
(pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
}
这里的value就是在map端获得的value,看它是怎么被赋值的,可以看到是从输入流中读取数据,这里有两种读取的方法,默认readDefaultLine的读取一行和通过自定义readCustomLine的分隔符的跨行
public int readLine(Text str, int maxLineLength,
int maxBytesToConsume) throws IOException {
if (this.recordDelimiterBytes != null) {
return readCustomLine(str, maxLineLength, maxBytesToConsume);
} else {
return readDefaultLine(str, maxLineLength, maxBytesToConsume);
}
}
默认的方式读取文件并没有用到自定义的分割符,而value获取到的还是输入流中的字节码,所以value的获得的依旧是文件的字节码,并没有做过处理,那么我们是不是可以在map端获取到的字节码按照“GBK”的方式来解码读取呢?经过测试之后发现的确是可以正常读取的
private int readDefaultLine(Text str, int maxLineLength, int maxBytesToConsume)
throws IOException {
/* We're reading data from in, but the head of the stream may be
* already buffered in buffer, so we have several cases:
* 1. No newline characters are in the buffer, so we need to copy
* everything and read another buffer from the stream.
* 2. An unambiguously terminated line is in buffer, so we just
* copy to str.
* 3. Ambiguously terminated line is in buffer, i.e. buffer ends
* in CR. In this case we copy everything up to CR to str, but
* we also need to see what follows CR: if it's LF, then we
* need consume LF as well, so next call to readLine will read
* from after that.
* We use a flag prevCharCR to signal if previous character was CR
* and, if it happens to be at the end of the buffer, delay
* consuming it until we have a chance to look at the char that
* follows.
*/
str.clear();
int txtLength = 0; //tracks str.getLength(), as an optimization
int newlineLength = 0; //length of terminating newline
boolean prevCharCR = false; //true of prev char was CR
long bytesConsumed = 0;
do {
int startPosn = bufferPosn; //starting from where we left off the last time
if (bufferPosn >= bufferLength) {
startPosn = bufferPosn = 0;
if (prevCharCR) {
++bytesConsumed; //account for CR from previous read
}
bufferLength = fillBuffer(in, buffer, prevCharCR);
if (bufferLength <= 0) {
break; // EOF
}
}
for (; bufferPosn < bufferLength; ++bufferPosn) { //search for newline
if (buffer[bufferPosn] == LF) {
newlineLength = (prevCharCR) ? 2 : 1;
++bufferPosn; // at next invocation proceed from following byte
break;
}
if (prevCharCR) { //CR + notLF, we are at notLF
newlineLength = 1;
break;
}
prevCharCR = (buffer[bufferPosn] == CR);
}
int readLength = bufferPosn - startPosn;
if (prevCharCR && newlineLength == 0) {
--readLength; //CR at the end of the buffer
}
bytesConsumed += readLength;
int appendLength = readLength - newlineLength;
if (appendLength > maxLineLength - txtLength) {
appendLength = maxLineLength - txtLength;
}
if (appendLength > 0) {
str.append(buffer, startPosn, appendLength);
txtLength += appendLength;
}
} while (newlineLength == 0 && bytesConsumed < maxBytesToConsume);
if (bytesConsumed > Integer.MAX_VALUE) {
throw new IOException("Too many bytes before newline: " + bytesConsumed);
}
return (int)bytesConsumed;
}
解决方法:
spark读取GBK编码文件
将value的字节码按照GBK的方式读取变成字符串,运行之后能够正常显示
object GBKtoUTF8 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
.setAppName(" GBK TO UTF8")
.setMaster("local")
val sc = new SparkContext(conf)
val rdd = sc.hadoopFile("F:\\data\\score.txt", classOf[TextInputFormat], classOf[LongWritable], classOf[Text], 1)
.map(p => new String(p._2.getBytes, 0, p._2.getLength, "GBK"))
.flatMap(s => s.split(","))
.map(x => (x, 1))
.reduceByKey(_ + _)
.collect
.foreach(println)
}
}
hadoop读取GBK编码文件
public void map(LongWritable key, Text value, Context context) {
try {
String line;
line = new String(value.getBytes(), 0, value.getLength(), "GBK");//使用GBK解析字节码 ,转成String
logger.info("gbkstr " + line);
//不要使用toStirng方法来获取字符串
//line = value.toString();
//logger.info("str " + line);
String[] item = line.split(",");
for (String str : item) {
outkey = new Text(str);
context.write(outkey, outvalue);
}
} catch (Exception e) {
e.printStackTrace();
}
}