GMM与K-means聚类效果实战

目录

一、数据探索和预处理

二、无监督学习-降维和聚类分析

三、聚类效果对比分析

四、小结和建议

备注

分析软件:python
数据已经分享在百度云:客户年消费数据
密码:lehv
该份数据中包含客户id和客户6种商品的年消费额,共有440个样本

正文

一、数据探索和预处理

1.读取数据
import numpy as np
import pandas as pd

data = pd.read_excel(r'C:\Users\user\Desktop\客户年消费数据.xlsx')

2.缺失检查
print('各字段缺失情况:\n', data.isnull().sum())

输出:

id                  0
Fresh               0
Milk                0
Grocery             0
Frozen              0
Detergents_Paper    0
Delicatessen        0
dtype: int64

观察得出:数据不存在缺失,且数据类型都为整数数值型

3.不同商品消费额分布

为了避免分布图右偏严重,剔除了大于95%分位数的极端值

import matplotlib.pyplot as plt
import seaborn as sns

# 六种商品年消费额分布图
fig = plt.figure(figsize=(16, 9))
for i, col in enumerate(list(data.columns)[1:]):
    plt.subplot(321+i)
    q95 = np.percentile(data[col], 95)
    sns.distplot(data[data[col] < q95][col])
plt.show()

输出:


图1.1 年消费额分布图

从图中看出:商品年消费额基本符合大于0的正态分布

4.极值和异常值处理
features = data[['Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', 'Delicatessen']]
# 剔除极值或异常值
ids = []
for i in list(features.columns):
    q1 = np.percentile(features[i], 25)
    q3 = np.percentile(features[i], 75)
    intervel = 1.6*(q3 - q1)/2
    low = q1 - intervel
    high = q3 + intervel
    ids.extend(list(features[(features[i] <= low) |
                             (features[i] >= high)].index))
ids = list(set(ids))
features = features.drop(ids)

二、无监督学习-降维和聚类分析

1.整体思路

数据中没有没有明显的目标变量,因此只能对客户的消费特征进行分析,也就是机器学习中所指的无监督方法。这里利用K-means和GMM(Gaussian Mixture Model)两种聚类算法,尝试对客户进行聚类分析,并对比两种算法的聚类结果差异。为了方便分析聚类效果,先用PCA算法降六个特征维度降低到两维。

2.聚类算法原理简述
K-means聚类

该算法利用数据点之间的欧式距离大小,将数据划分到不同的类别,欧式距离较短的点处于同一类。算法结果直接返回的是数据点所属的类别。

GMM

全称Gaussian Mixture Model,可以简单翻译为高斯混合模型,Gaussian指高斯分布(也就是正态分布)。该算法假设所有数据点来自多个参数不同的高斯分布,来自同一分布的数据点被划分为同一类。算法结果返回的是数据点属于不同类别的概率。

3.数据降至二维(PCA)
# 计算每一列的平均值
meandata = np.mean(features, axis=0)  
# 均值归一化
features = features - meandata    
# 求协方差矩阵
cov = np.cov(features.transpose())
# 求解特征值和特征向量
eigVals, eigVectors = np.linalg.eig(cov) 
# 选择前两个特征向量
pca_mat = eigVectors[:, :2]
pca_data = np.dot(features , pca_mat)
pca_data = pd.DataFrame(pca_data, columns=['pca1', 'pca2'])

# 两个主成分的散点图
plt.subplot(111)
plt.scatter(pca_data['pca1'], pca_data['pca2'])
plt.xlabel('pca_1')
plt.ylabel('pca_2')
plt.show()

输出:


图2.1 前两个主成分散点图

说明:图2.1中,横轴代表第一主成分,纵轴代表第二主成分

4.数据降维后信息保留百分比
print('前两个主成分包含的信息百分比:{:.2%}'.format(np.sum(eigVals[:2])/np.sum(eigVals)))

输出:

前两个主成分包含的信息百分比:92.39%

5.客户聚类

该步骤中,主要是对降维后的二维数据进行GMM和K-means聚类。聚类类别分别为2,3,4,5时,对比时两种算法下,点的的划分结果,并以散点图展现。
先定义make_ellipses函数,用于画出GMM算法中的高斯分布区域:

import matplotlib as mpl

#  定义make_ellipses函数,根据GMM算法输出的聚类类别,画出相应的高斯分布区域
def make_ellipses(gmm, ax, k):
    for n in np.arange(k):
        if gmm.covariance_type == 'full':
            covariances = gmm.covariances_[n][:2, :2]
        elif gmm.covariance_type == 'tied':
            covariances = gmm.covariances_[:2, :2]
        elif gmm.covariance_type == 'diag':
            covariances = np.diag(gmm.covariances_[n][:2])
        elif gmm.covariance_type == 'spherical':
            covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n]
        v, w = np.linalg.eigh(covariances)
        u = w[0] / np.linalg.norm(w[0])
        angle = np.arctan2(u[1], u[0])
        angle = 180 * angle / np.pi  # convert to degrees
        v = 2. * np.sqrt(2.) * np.sqrt(v)
        ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1],
                                  180 + angle)
        ell.set_clip_box(ax.bbox)
        ell.set_alpha(0.3)
        ax.add_artist(ell)

再根据模型输出,画出聚类结果对比图:

from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
from sklearn.metrics import silhouette_score

score_kmean = []
score_gmm = []
random_state = 87
n_cluster = np.arange(2, 5)
for i, k in zip([0, 2, 4, 6], n_cluster):
    # K-means聚类
    kmeans = KMeans(n_clusters=k, random_state=random_state)
    cluster1 = kmeans.fit_predict(pca_data)
    score_kmean.append(silhouette_score(pca_data, cluster1))

    # gmm聚类
    gmm = GaussianMixture(n_components=k, covariance_type='full', random_state=random_state)
    cluster2 = gmm.fit(pca_data).predict(pca_data)
    score_gmm.append(silhouette_score(pca_data, cluster2))

    # 聚类效果图
    plt.subplot(421+i)
    plt.scatter(pca_data['pca1'], pca_data['pca2'], c=cluster1, cmap=plt.cm.Paired)
    if i == 6:
        plt.xlabel('K-means')
    plt.subplot(421+i+1)
    plt.scatter(pca_data['pca1'], pca_data['pca2'], c=cluster2, cmap=plt.cm.Paired)
    make_ellipses(gmm, ax, k)
    if i == 6:
        plt.xlabel('GMM')
plt.show()

输出:


图2.2 聚类效果对比

说明:聚类类别分别为2,3,4,5时,两种聚类算法结果对比(左边是K-means,右边是GMM);点的颜色相同代表被聚为同一类;右图中的透明椭圆区域,代表GMM算法估计出的隐藏高斯分布区域。

三、聚类效果分析

如何评判聚类结果呢?这里引入轮廓分析(Silhouette analysis),轮廓分析主要统计轮廓得分,该指标计算聚类类别与相邻类别之间的总体距离大小,从而判断聚类有效程度。

# 聚类类别从2到11,统计两种聚类模型的silhouette_score,分别保存在列表score_kmean 和score_gmm 
score_kmean = []
score_gmm = []
random_state = 87
n_cluster = np.arange(2, 12)
for k in n_cluster:
    # K-means聚类
    kmeans = KMeans(n_clusters=k, random_state=random_state)
    cluster1 = kmeans.fit_predict(pca_data)
    score_kmean.append(silhouette_score(pca_data, cluster1))
    # gmm聚类
    gmm = GaussianMixture(n_components=k, covariance_type='spherical', random_state=random_state)
    cluster2 = gmm.fit(pca_data).predict(pca_data)
    score_gmm.append(silhouette_score(pca_data, cluster2))

# 得分变化对比图
sil_score = pd.DataFrame({'k': np.arange(2, 12),
                          'score_kmean': score_kmean,
                          'score_gmm': score_gmm})
# K-means和GMM得分对比
plt.figure(figsize=(10, 6))
plt.bar(sil_score['k']-0.15, sil_score['score_kmean'], width=0.3,
        facecolor='blue', label='Kmeans_score')
plt.bar(sil_score['k']+0.15, sil_score['score_gmm'], width=0.3,
        facecolor='green', label='GMM_score')
plt.xticks(np.arange(2, 12))
plt.legend(fontsize=16)
plt.ylabel('silhouette_score', fontsize=16)
plt.xlabel('k')
plt.show()

输出:


图3.1 K-means和GMM得分对比

四、小结和建议

经过本次探索过程,总结以下几点:
1.图2.2,从点的划分情况来看,GMM和K-means的聚类结果具有较强的相似性;
2.图3.1, 从对比的角度,以silhouette_score为评判指标,整体上GMM的模型得分略低于K-means;
3.图3.1,聚类类别增多时,K-means模型的得分比较稳定,几乎没有明显差别,相比之下,GMM模型的得分开始下降幅度较大,但之后也趋于稳定。
4.根据得分情况,最佳聚类类别应该为2或3,此时K-means和GMM模型的表现都比较好。
5.最优k值对应的聚类类别可以作为新的数据特征,用于其它分析。

个人建议:若不考虑运算速度,当两种算法聚类得分差异很小时,推荐使用GMM算法,因为GMM能输出数据点属于某一类别的概率,因此输出的信息丰富程度大大高于K-means算法。

ps:欢迎指出文章中出现的任何错误,连同其它问题可在评论区交流,谢谢支持~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容