数据结构与算法--BFS&DFS

“搜索”算法

深度优先搜索算法和广度优先搜索算法都是基于“图”这种数据结构。

图上的搜索算法就是,在图中找出从一个顶点出发,到另一个顶点的路径。图上的搜索算法有深度优先、广度优先搜索算法,和A、ID A等启发式搜索算法。

广度优先搜索和深度优先搜索是图上的两种最常用、最基本的搜索算法,仅适用于状态空间不大的搜索。他们比A、ID A等启发式搜索算法要简单粗暴,没有什么优化,所以也叫暴力搜索算法。

广度优先搜索,采用地毯式层层推进,从其实顶点开始,依此往外遍历。广度优先搜索需要借助队列来实现,遍历得到的路径就是起始顶点到终止顶点的最短路径。

深度优先搜索,采用回溯思想,使用递归或栈来实现。遍历得到的路径并不是最短路径。

深度优先和广度优先搜索的时间复杂度都是O(E),空间复杂度都是O(V)。其中E代表边,O代表顶点。

下面java语言实现邻接表来存储无向图:

public class Graph{
   // 顶点的个数
   private int v;
   // 邻接表
   private LinkedList<Integer> adj[];
   
   public Graph(int v){
       this.v = v;
       adj = new LinkedList[v];
       for (int i = 0; i < v; i++){
           adj[v] = new LinkedList<>();
       }
   }
   
   // 无向图一条边存两次
   public void addEdge(int s, int t){
       adj[s].add(t);
       adj[t].add(s);
   }
}

广度优先搜索(BFS)

广度优先搜索(Breadth-First-Search),简称BFS。它是一种“地毯式”层层推进的搜索策略,即先查找离起始顶点最近的,然后是次近的,依次往外搜索:

下面的java代码实现基于上面的graph的定义:

bfs()函数用于搜索一条从s到t的最短路径,其中s表示起始顶点,t表示终止顶点。

visited是用来记录已经被访问的顶点,用来避免顶点被重复访问。如果顶点q被访问,那么相应的visited[q]会被设置为true。

queue是一个队列,用来存储已经被访问、但相连的顶点还没有被访问的顶点。

prev用来记录搜索路径。prev[w]存储的是,顶点w是从哪个前驱顶点遍历过来的。比如顶点2的邻接表访问到顶点3,那prev[3]就等于2.为了正向打印出路径需要递归地来打印。

public void bfs(int s, int t){
    if (s == t) return;
    boolean[] visited = new boolean[v];
    visited[s] = true;
    Queue<Integer> queue = new LinkedList<>();
    queue.add(s);
    int[] prev = new int[v];
    for (int i = 0; i < v; i++){
        prev[i] = -1;
    }
    
    while(queue.size() != 0){
        int w = queue.poll();
        for (int i = 0; i < adj[w].size(); i++){
            int q = adj[w].get(i);
            if (! visited[q]){
                prev[q] = w;
                if (q == t){
                    print(prev, s, t);
                    return;
                }
                visited[q] = true;
                queue.add(q);
            }
        }
    }
}

// 递归打印s -> t的路径
private void print(int[] prev, int s, int t){
    if (prev[t] != -1 && t != s){
        print(prev, s, prev[t]);
    }
    System.out.print(t + " ");
}

最坏情况下,终止顶点t离起始顶点s很远,需要遍历完整个图才能找到。这个时候,每个顶点都要进出一遍队列,每个边也都会被访问一次。

假设顶点的个数为V,边的个数为E,那么广度优先搜索的时间复杂度是O(V + E)。对于连通图(所有顶点都是连通的)来说,E > V - 1,所以广度优先搜索的时间复杂度可以简写为O(E)。

广度优先搜索的空间消耗主要在辅助变量visited数组、queue队列、prev数组上。这三个存储空间的大小都不会超过顶点的个数,所以空间复杂度是O(V)。

深度优先搜索(DFS)

深度优先搜索(Depth-First-Search),简称DFS。

最直观的例子就是“走迷宫”。假设你站在迷宫的某个岔路口,然后想找到出口。你随意选择一个岔路口来走,走着走着发现走不通的时候,你就回退到上一个岔路口,重新选择以一条路继续走,直到最终找到出口。这种走法就是一种深度优先搜索策略。

下图中,搜索的起始顶点是s,终止顶点是t,希望在图中寻找一条从s到顶点t的路径。如果映射到迷宫的那个例子,s就是你起始的位置,t就是出口。

下图标记了递归算法的搜索的过程,里面实线箭头表示遍历,虚线箭头表示回退。但深度优先搜索最先找出来的路径,并不是顶点s到顶点t的最短路径。

深度优先搜索用的是回溯思想,回溯思想非常适合用递归来实现。

下面是java代码实现,其中的prev、visited变量跟广度优先搜索的作用一样,变量found的作用是已经找到终止顶点t之后,就不再递归地继续查找了。

// 全局变量或者类成员变量
boolean found = false;

public void dfs(int s, int t){
    found = false;
    boolean[] visited = new boolean[v];
    int[] prev = int int[v];
    for (int i = 0; i < v; i++){
        prev[i] = -1;
    }
    recurDfs(s, t, visited, prev);
    print(prev, s, t);
}

private void recurDfs(int w, int t, boolean[] visited, int[] prev){
    if (found == true) return;
    visited[w] = true;
    if (w == t){
        found = true;
        return;
    }
    for (int i = 0; i < adj[w].size(); i++){
        int q = adj[w].get(i);
        if (! visited[q]){
            prev[q] = w;
            recurDfs(q, t, visited, prev);
        }
    }
}

深度优先搜索算法的时间复杂度是O(E),E表示边的个数。因为每条边最多会被访问两次,一次是遍历,一次是回退。

深度优先搜索算法的消耗内存主要是visited、prev数组和递归调用栈。visited、prev数组的大小跟顶点的个数V成正比,递归调用栈的最大深度不会超过顶点的个数,所以总的空间复杂度是O(V)。

如何找出社交网络中的三度好友关系?

六度分割理论说你与世界上的另一个间隔的关系不会超过六度,也就是说平均只需要六步就可以联系到任何两个互不认识的人。

一个用户的一度连接用户就是他的好友,二度连接用户就是他好友的好友,三度连接用户就是他好友的好友的好友。在社交网络中,我们往往通过用户之间的连接关系,来实现推荐“可能认识的人”这么一个功能。

如何找出一个用户的所有三度(其中包含一度、二度、三度)好友关系?

答:

社交网络可以用图表示。用图的广度优先搜索算法遍历与起始顶点最近的一层顶点,也就是用户的一度好友,然后再遍历与用户距离的边数为2的顶点,也就是二度好友关系,以及与用户距离的边数为3的顶点,也就是三度好友关系。用一个数组来记录每个顶点与起始顶点的距离,非常容易就可以找出三度好友关系。

也可以用深度优先搜索来解决这个问题,将递归的终止条件改为距离大于3.

如何将迷宫抽象成图并存储在计算机中?

答:

为迷宫建立二维坐标系,这样每个分叉路口都会在这个2维坐标系上有一个唯一的坐标。

将所有的分叉路口的坐标作为顶点,相邻顶点之间连成边,构成一张无向图。

使用散列表来存储,键位所有的顶点,值位该顶点的相邻顶点的链表(可以将链表替换为有序数组、红黑树或跳表)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351