encode eclip 数据分析流程

# 准备:

测序数据:fastq格式;RBFOX2 HepG2测序数据 - RBFOX2

STAR的基因组索引:UCSC下载fasta格式

STAR的重复元件索引:RepBase下载fasta格式

barcodes文件:fasta格式

chrom.sizes文件:UCSC下载,tab分割,第一列染色体名,第二列染色体长度,hg19 chrom.sizes

# 流程概述:

  1. eclipdemux用于PE测序的样本拆分和提取UMI;umi_tools用于SE测序的UMI提取

  2. cutadapt修剪adapters

  3. STAR比对到重复元件和筛选

  4. 比对筛选之后的测序数据到基因组

  5. 去除PCR产生的重复:SE测序使用umi_tools,常规工具可以使用barcodecollapsepe.py

  6. (paired-end only) Merges multiple inline barcodes and filters R1 (uses only R2 for peak calling)

  7. Calls enriched peak regions (peak clusters) with CLIPPER

  8. Uses size-matched input sample to normalize and calculate fold-change enrichment within enriched peak regions with custom perl scripts (overlap_peakfi_with_bam_PE.pl, peakscompress.pl)

## 1. eclipdemux用于PE测序的样本拆分和提取UMI;umi_tools用于SE测序的UMI提取

# SE 鉴定UMI
umi_tools extract \
--random-seed 1 \
--bc-pattern NNNNNNNNNN \
--log EXAMPLE_SE.rep1_clip.---.--.metrics \ --stdin file_R1.fastq.gz \
--stdout EXAMPLE_SE.rep1.umi.r1.fq

# PE 样本拆分和鉴定UMI
eclipdemux \
--metrics EXAMPLE_PE.rep1_clip.---.--.metrics \ --expectedbarcodeida C01 \ --expectedbarcodeidb D8f \
--fastq_1 file_R1.fastq.gz \
--fastq_2 file_R2.fastq.gz \
--newname rep2_clip \
--dataset EXAMPLE_PE \
--barcodesfile yeolabbarcodes_20170101.fasta \ --length 5

## ## 2. Cutadapt 去除adapters

因为可能发生两次adapter连接事件,所以进行两次Cutadapt剪切

Cutadapt round 1:

cutadapt \
-f fastq \
--match-read-wildcards \
--times 1 \
-e 0.1 \
-O 1 \
--quality-cutoff 6 \
-m 18 \
-a NNNNNAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC \ -g CTTCCGATCTACAAGTT \
-g CTTCCGATCTTGGTCCT \
-A AACTTGTAGATCGGA \
-A AGGACCAAGATCGGA \
-A ACTTGTAGATCGGAA \
-A GGACCAAGATCGGAA \
-A CTTGTAGATCGGAAG \
-A GACCAAGATCGGAAG \
-A TTGTAGATCGGAAGA \
-A ACCAAGATCGGAAGA \
-A TGTAGATCGGAAGAG \
-A CCAAGATCGGAAGAG \
-A GTAGATCGGAAGAGC \
-A CAAGATCGGAAGAGC \
-A TAGATCGGAAGAGCG \
-A AAGATCGGAAGAGCG \
-A AGATCGGAAGAGCGT \
-A GATCGGAAGAGCGTC \
-A ATCGGAAGAGCGTCG \
-A TCGGAAGAGCGTCGT \
-A CGGAAGAGCGTCGTG \
-A GGAAGAGCGTCGTGT \
-o EXAMPLE_PE.rep2_clip.C01.r1.fqTr.fq \
-p EXAMPLE_PE.rep2_clip.C01.r2.fqTr.fq \ EXAMPLE_PE.rep2_clip.C01.r1.fq.gz \ EXAMPLE_PE.rep2_clip.C01.r2.fq.gz

Fastqc round 1

fastqc -t 2 --extract -k 7 EXAMPLE_PE.rep2_clip.C01.r1.fqTr.fq -o . fastqc -t 2 --extract -k 7 EXAMPLE_PE.rep2_clip.C01.r2.fqTr.fq –o .

Cutadapt round 2

cutadapt \
-f fastq \
--match-read-wildcards \
--times 1 \
-e 0.1 \
-O 5 \
--quality-cutoff 6 \
-m 18 \
-A AACTTGTAGATCGGA \
-A AGGACCAAGATCGGA \
-A ACTTGTAGATCGGAA \
-A GGACCAAGATCGGAA \
-A CTTGTAGATCGGAAG \
-A GACCAAGATCGGAAG \
-A TTGTAGATCGGAAGA \
-A ACCAAGATCGGAAGA \
-A TGTAGATCGGAAGAG \
-A CCAAGATCGGAAGAG \
-A GTAGATCGGAAGAGC \
-A CAAGATCGGAAGAGC \
-A TAGATCGGAAGAGCG \
-A AAGATCGGAAGAGCG \
-A AGATCGGAAGAGCGT \
-A GATCGGAAGAGCGTC \
-A ATCGGAAGAGCGTCG \
-A TCGGAAGAGCGTCGT \
-A CGGAAGAGCGTCGTG \
-A GGAAGAGCGTCGTGT \
-o EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.fq \ -p EXAMPLE_PE.rep2_clip.C01.r2.fqTrTr.fq \ EXAMPLE_PE.rep2_clip.C01.r1.fqTr.fq \ EXAMPLE_PE.rep2_clip.C01.r2.fqTr.fq

Fastqc round 2

fastqc -t 2 --extract -k 7 EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.fq -o . fastqc -t 2 --extract -k 7 EXAMPLE_PE.rep2_clip.C01.r2.fqTrTr.fq –o .

Fastq-sort

fastq-sort --id EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.fq > EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.sorted.fq
fastq-sort --id EXAMPLE_PE.rep2_clip.C01.r2.fqTrTr.fq > EXAMPLE_PE.rep2_clip.C01.r2.fqTrTr.sorted.fq

## 3. STAR比对到重复元件和筛选

#STAR rmRe
STAR \
--runMode alignReads \
--runThreadN 8 \
--genomeDir homo_sapiens_repbase_v2 \
--genomeLoad NoSharedMemory \
--alignEndsType EndToEnd \
--outSAMunmapped Within \
--outFilterMultimapNmax 30 \
--outFilterMultimapScoreRange 1 \
--outFileNamePrefix EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.sorted.STAR \ --outSAMtype BAM Unsorted \
--outFilterType BySJout \
--outBAMcompression 10 \
--outReadsUnmapped Fastx \
--outFilterScoreMin 10 \
--outSAMattrRGline ID:foo \
--outSAMattributes All \
--outSAMmode Full \
--outStd Log \
--readFilesIn EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.sorted.fq EXAMPLE_PE.rep2_clip.C01.r2.fqTrTr.sorted.fq

#Re-name files: re-name repeat-mapped outputs
mv EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.sorted.STARAligned.out.bam
EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-mapped.bam
mv EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.sorted.STARUnmapped.out.mate1 EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-unmapped.fq
mv EXAMPLE_PE.rep2_clip.C01.r1.fqTrTr.sorted.STARUnmapped.out.mate2 EXAMPLE_PE.rep2_clip.C01.r2.fq.repeat-unmapped.fq

# Fastq-sort
fastq-sort --id EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-unmapped.fq > EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-unmapped.sorted.fq fastq-sort --id EXAMPLE_PE.rep2_clip.C01.r2.fq.repeat-unmapped.fq > EXAMPLE_PE.rep2_clip.C01.r2.fq.repeat-unmapped.sorted.fq

## 4. 比对筛选之后的测序数据到基因组

#STAR genome mapping: Takes output from STAR rmRep. Maps unique reads to the human genome

STAR \
--runMode alignReads \
--runThreadN 8 \
--genomeDir /stage/hg19_star_sjdb \
--genomeLoad NoSharedMemory \
--readFilesIn \
EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-unmapped.sorted.fq \ EXAMPLE_PE.rep2_clip.C01.r2.fq.repeat-unmapped.sorted.fq \
--outSAMunmapped Within \
--outFilterMultimapNmax 1 \
--outFilterMultimapScoreRange 1 \
--outFileNamePrefix EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-unmapped.sorted.STAR \
--outSAMattributes All \
--outSAMtype BAM Unsorted \
--outFilterType BySJout \
--outReadsUnmapped Fastx \
--outFilterScoreMin 10 \
--outSAMattrRGline ID:foo \
--outStd Log \
--alignEndsType EndToEnd \
--outBAMcompression 10 \
--outSAMmode Full

# Re-name BAM: rename genome-mapped outputs
mv EXAMPLE_PE.rep2_clip.C01.r1.fq.repeat-unmapped.sorted.STARAligned.out.bam EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mapped.bam

# Name sort BAM: sort output from STAR by name to ensure read pairs are adjacent. samtools sort -n -o EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.bam
EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mapped.bam

## 5. 去除PCR产生的重复:SE测序使用umi_tools,常规工具可以使用barcodecollapsepe.py

# Barcode_collapse_pe (PE): takes output from STAR genome mapping. 
barcodecollapsepe.py \
-o EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.rmDup.bam \
-m EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.rmDup.metrics \ -b EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.bam

# Position sort BAM: Takes output from barcode collapse PE (or from SE namesort bam). Sorts resulting bam file for use downstream.
samtools sort -o EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.bam EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDup.bam

# Barcode_collapse_se (SE): takes output from STAR genome mapping. Use umi_tools dedup to identify the extracted random-mer from the previous step and perform PCR duplicate removal.
umi_tools dedup \
--random-seed 1 \
---I EXAMPLE_SE.rep1_clip.umi.r1.fq.genome-mappedSoSo.bam \
--method unique \
--output-stats EXAMPLE_SE.rep1_clip.umi.r1.fq.genome-mappedSoSo.txt \ -S EXAMPLE_SE.rep1_clip.umi.r1.fq.genome-mappedSoSo.rmDup.bam

#Samtools index: Takes output from sortSam, makes bam index for use downstream.
samtools index EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.rmDupSo.bam

## 6. (paired-end only) Merges multiple inline barcodes and filters R1 (uses only R2 for peak calling)

# Samtools merge (PE only): Takes inputs from multiple final bam files. Merges the two technical replicates for further downstream analysis.
samtools merge EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.bam EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.bam EXAMPLE_PE.rep2_clip.D8f.r1.fq.genome- mappedSo.rmDupSo.bam

# Samtools index: Takes output from sortSam, makes bam index for use downstream. samtools index EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.bam

## 7.Calls enriched peak regions (peak clusters) with CLIPPER

# Samtools view (PE only): Takes output from samtools merge. Only outputs the second read in each pair for use with a single stranded peak caller. This is the final bam file to perform analysis on.
# -f 128: 提取read pair的read 2
samtools view -f 128 -b -o EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.bam EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.bam

# Make normalized read density bigwig files. Use --direction f for SE clip as reads are not reversed.
makebigwigfiles \
--bw_pos EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.norm.pos.bw \
--bw_neg EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.norm.neg.bw \
--bam EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.rmDupSo.merged.r2.bam \ --genome hg19.chrom.sizes \
--direction r

# Clipper: Takes results from samtools view. Calls peaks on those files.
clipper \
--species hg19 \
--bam EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.rmDupSo.merged.r2.bam \ --save-pickle \
--outfile EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.peakClusters.bed

## 8. Uses size-matched input sample to normalize and calculate fold-change enrichment within enriched peak regions with custom perl scripts (overlap_peakfi_with_bam_PE.pl, peakscompress.pl)

# Input normalization: Compares the number of reads within the IP sample to the number of reads within the size-matched INPUT sample across Clipper-called peak clusters. This step is performed both within this pipeline as well as within the merge_peaks pipeline using the same perl scripts.

samtools view -cF 4 EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.bam > ip_mapped_readnum.txt samtools view -cF 4 EXAMPLE_PE.rep2_input.NIL.r1.fq.genome- mappedSo.rmDupSo.r2.bam > input_mapped_readnum.txt

overlap_peakfi_with_bam_PE.pl \ EXAMPLE_PE.rep2_clip.C01.r1.fq.genome-mappedSo.rmDupSo.merged.r2.bam \ EXAMPLE_PE.rep2_input.NIL.r1.fq.genome-mappedSo.rmDupSo.r2.bam \ EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.peakClusters.bed \
ip_mapped_readnum.txt \
input_mapped_readnum.txt \
EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.peakClusters.normed.bed

perl compress_l2foldenrpeakfi_for_replicate_overlapping_bedformat.pl \ EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.peakClusters.normed.bed \ EXAMPLE_PE.rep2_clip.C01.r1.fq.genome- mappedSo.rmDupSo.merged.r2.peakClusters.normed.compressed.bed

原文

eCLIP pipeline
eCLIP_analysisSOP_v2.2

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,451评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,172评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,782评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,709评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,733评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,578评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,320评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,241评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,686评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,878评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,992评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,715评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,336评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,912评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,040评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,173评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,947评论 2 355

推荐阅读更多精彩内容