R语言 apply/lapply/sapply函数

这个算是R独占的一个函数,在python中目前我还没学习到替代的表达
以后如果有再更新


apply:分行列遍历
lapply:全list遍历
sapply: 当simplify=T时候,如果函数返回值长度为1,则sapply将list简化为vector


apply的神奇功效如下

apply(X, MARGIN, FUN, ...)

X: an array, including a matrix.
MARGIN: 1:行操作; 2:列操作
FUN:函数名

> a<-matrix(1:12,c(3,4))
> print(a)
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

1是对行操作
2是对列操作

> apply(a,1,sum) 
[1] 22 26 30
> apply(a,2,sum)
[1]  6 15 24 33
> apply(a,1,function(x) sum(x))
[1] 22 26 30
> apply(a,1,function(x) sum(x)+2)
[1] 24 28 32
> apply(a,1,function(x) x^2)
     [,1] [,2] [,3]
[1,]    1    4    9
[2,]   16   25   36
[3,]   49   64   81
[4,]  100  121  144
> apply(a,2,function(x) x^2)
     [,1] [,2] [,3] [,4]
[1,]    1   16   49  100
[2,]    4   25   64  121
[3,]    9   36   81  144

lapply的神奇功效如下 (对象必须是list)

lapply(list, function, ...)
> a<-matrix(1:12,c(3,4))
> print(a)
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> a.df<-data.frame(a)
> is.list(a)
[1] FALSE
> is.list(a.df)
[1] TRUE
> str(a.df)
'data.frame':   3 obs. of  4 variables:
 $ X1: int  1 2 3
 $ X2: int  4 5 6
 $ X3: int  7 8 9
 $ X4: int  10 11 12
> lapply(a.df,function(x) x+3)
$X1
[1] 4 5 6
$X2
[1] 7 8 9
$X3
[1] 10 11 12
$X4
[1] 13 14 15
> lapply(a.df,function(x) sum(x)+3)
$X1
[1] 9
$X2
[1] 18
$X3
[1] 27
$X4
[1] 36

sapply的神奇功效如下

sapply(list, function, ..., simplify) 

simplify=F:返回值的类型是list,此时与lapply完全相同
simplify=T(默认值):返回值的类型由计算结果定,如果函数返回值长度为1,则sapply将list简化为vector;
如果返回的列表中每个元素的长度都大于1且长度相同,那么sapply将其简化位一个矩阵

> y <- lapply(a.df,function(x) sum(x)+3)
> yy<-sapply(a.df, function(x) x^2)
> print(yy)
     X1 X2 X3  X4
[1,]  1 16 49 100
[2,]  4 25 64 121
[3,]  9 36 81 144
> str(yy)
 num [1:3, 1:4] 1 4 9 16 25 36 49 64 81 100 ...
 - attr(*, "dimnames")=List of 2
  ..$ : NULL
  ..$ : chr [1:4] "X1" "X2" "X3" "X4"
> str(y)
List of 4
 $ X1: num 9
 $ X2: num 18
 $ X3: num 27
 $ X4: num 36
> yy <- sapply(a.df,function(x,y) x^2+y,y=3)
> print(yy)
     X1 X2 X3  X4
[1,]  4 19 52 103
[2,]  7 28 67 124
[3,] 12 39 84 147
> y1 <- sapply(a.df,sum)
> print(y1)
X1 X2 X3 X4 
 6 15 24 33 
> str(y1)
 Named int [1:4] 6 15 24 33
 - attr(*, "names")= chr [1:4] "X1" "X2" "X3" "X4"
> y1 <- sapply(a.df,sum,simplify = F)
> y1
$X1
[1] 6
$X2
[1] 15
$X3
[1] 24
$X4
[1] 33
> str(y1)
List of 4
 $ X1: int 6
 $ X2: int 15
 $ X3: int 24
 $ X4: int 33
unlist(lapply(1:length(area_int), function(x) {str_extract_all(area_int,"[:print:]{1,2}+[室])[[x]]}))

如果不加后面的[[x]]就是一个30x30的表(length是30)
加了就变成一个有30个character的list
迷惑。。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,928评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,192评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,468评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,186评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,295评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,374评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,403评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,186评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,610评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,906评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,075评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,755评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,393评论 3 320
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,079评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,313评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,934评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,963评论 2 351