Eng: Mobile Game Data Analysis Frame

1. Acquisition: analysis in channel, ad injection

Daily New Users, DNU: users who sign up and sign in games per day

functions:

a. reflect the new-user contribution of each channels 

b. check the channel cheating

c. visualize the macro trend and decide whether need advertisement injection

note:

similar metrics: WNU, MNU for week and month

According to requirements, category as users in natural growth and users in promotion 

Daily One Session Users,DOSU: user who only has one session and session time is less than the regulated threshold 

functions:

a. detect click farming in promotion channels

b. check the quality of channels

c. check obstacles during importing users: network situation, loading time 

Customer Acquisition Cost,CAC = promotion cost / number of efficient new sign-in users

functions:

a. determine to choose the right channel to optimize advertisement injection

b. estimate the cost of channels promotion 

note:

CAC is calculated by segmenting channels

New Users Conversion Rate: Clicks->Install->Register->Login

2. Activation

Daily Active Users,DAU: number of sign-in users per day

functions:

a. kernel user scale

b. measure the trend of the game life time

c. compare user churn rate and active rate

d. active user life time in channels

e. user stickiness/retention (with MAU)

note:

similar metrics: WAU, MAU for week and month

MAU is also for user scale stability, and estimating promotion effectiveness

Daily Engagement Count,DEC:the number of opening games for users per day

functions:

a. user stickiness (average DEC)

b. channel-oriented, check frequency

c. user-oriented, check frequency 

note:

behaviors in 30 seconds as 1 DEC

average DEC = DEC / daily engagement user count

analyze performance after updating version by different DEC distribution

Daily Avg.Online Time,DAOT/AT: online time per active users each day

functions:

a. degree of paticipation

b. game quality metric

c. channel  quality metric

d. combine with Average Online Time per sign-in to analysis retention and user churn

note:

help analyze cheating, version stickiness and effectiveness 

3. Retention & Churn

Users Retention: case of using for each new sign-in user in regulated periods: day1, day3, day7, day30

functions:

a. users' adaptability to game 

b. evaluate user quality in channels

c. channel quanlity

d. user stickiness 

e. detect steep-loss stage for new users

note:

retention is metric reflecting users' satisfaction 

retention is talked along with churn

Users Churn: case of leaving in regulated periods: day1, day7, day30

functions:

a. active user life time

b. channel quality

c. detect influence of version update

d. detect period with high churn rate 

4. Revenue

a. revenue from download

b. revenue from ad in games

c. revenue from in-app purchase

Daily Payment Ratio,DPR = APA / DAU, APA is Active Payment Account

a. check the rationality of the paying lead 

b. reflect users paying intention 

c. check the conversion of paying

Active Payment Account,APA

functions:

a. scale of paying users

b. portion of APA: whales, dolphins, minnows

c. stability of paying users

Average Revenue per Uers,ARPU

eg: for months, ARPU = Revenue / MAU

Average Revenue per Paying User,ARPPU

ARRPU = Revenue / APA

ARPPU is easily affected by whales and minnows.

ARPPU, APA and MPR are combined to analyze retention of paying users.

Life Time Value,LTV

LTV = ARPULT, by month

Value from the first time that users join in games to the last time.

5. Referral

K-Factor:describe the growth rate of websites

K-Factor= number of shares * conversion rate

K > 1, fast growth


Others:

Peak Concurrent Users, PCU

Average Concurrent Users, ACU

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349