python告诉你ti8 dota2英雄bp

文章链接:https://mp.weixin.qq.com/s/phJzZEQojndY-iNe77RF_w

恭喜OG成为ti8冠军,很可惜这次偶数年ti8中国队LGD与冠军失之交臂。

上学那会儿还是个dota的玩家,现在已经不玩了,对于这种国际性的赛事还是会比较关注的,这篇文章就是爬取ti8期间,bp英雄的统计(b是ban的简称:禁止一个英雄上场;p是pick的简称:挑选英雄上场)。

python爬虫之前写过几篇文章的,都是用requests+ BeautifulSoup 进行页面解析获取数据的。

python itchat 爬取微信好友信息

python爬虫学习:爬虫QQ说说并生成词云图,回忆满满

一如既往的,找到这样的页面,但是却解析不到这些数据。

image
image

再仔细一看,原来这些数据是js动态加载渲染的,可以看到是接口请求来的数据,庆幸的是这个接口不需要cookie之类的验证信息的,直接get请求可以拿到数据,这样处理起来就方便的,对照页面可以知道json格式的各字段名。

json结构分析

数据来源是接口,直接

response = requests.get(url)
data = json.loads(response.text)

通过json.loads 去解析string类型的数据,主要数据格式如下:

{
    total: 402,
    data: [{
        match_id: 4080856812,
        radiant: {
            team_id: 15,
            name: "PSG.LGD",
            tag: "PSG.LGD",
            country_code: "CN",
            score: 34,
            bans: [{ //每个英雄数据
                name: "spectre",
                name_cn: "幽鬼",
                id: 67
            }, ...],
            picks: [{
                name: "earthshaker",
                name_cn: "撼地者",
                id: 7
            }, ...]
        },
        dire: {
            team_id: 2586976,
            name: "OG",
            tag: "OG",
            country_code: "US",
            score: 35,
            bans: [{
                name: "tiny",
                name_cn: "小小",
                id: 19
            }, ...],
            picks: [{
                name: "furion",
                name_cn: "先知",
                id: 53
            }, ...]
        },
        radiant_win: 0,
        end_time: "2018-08-26 10:51"
    }, ...]
}

每个item含radiant、dire ,其中radiant_win: 1,代表radiant 获胜,0 则代表dire 获胜。bans里面的是ban的英雄数据列表,picks里面是pick的英雄数据列表。

这里是用循环不断去请求获取的,每次的数据是20条,可以改变size改变条数。

page = 1
while True:
    url = "https://www.dotamore.com/api/v1/league/matchlist?league_id=9870&page=%d&size=20" % page
    response = requests.get(url)
    data = json.loads(response.text)
    page += 1
    for item in data["data"]:
        # 比赛从8月16开始,小于这个时间生成excel,跳出循环
        if item["end_time"] < "018-08-16 00:00":
            //生成excel
            ...
        return
        //bp数据
        ...

bp数据

每项里面的bans、picks数据都要处理,每个英雄是一条记录,重复的就+1,所以给每个英雄count 的属性,记录次数。

# item 指radiant 或dire 的bans、picks列表数据
def bp(item, bp_dict):
    if item is None:
        return
    # 遍历bans 或picks 数据
    for i, bp in enumerate(item):
        key = bp["name"]
        # 如果这个英雄已存在,count+1
        if key in bp_dict.keys():
            bp_dict[key]["count"] = bp_dict[key]["count"] + 1
        else:  # 不存在就记录一条数据
            bp_dict[key] = copy.deepcopy(bp)
            bp_dict[key].update(count=1)
    return bp_dict

每条英雄数据是个键值对字典,键是name 属性即英文名字,值就是bans、picks里的各项英雄数据,顺便加上了count 属性。每个英雄数据存在dict()

{ //每条英雄数据
    name: "tiny",
    name_cn: "小小",
    id: 19,
    count:1
}

分别获取两只队伍bp数据存放

b_dict = dict()
p_dict = dict()
# ban的数据
bp(item["radiant"]["bans"], b_dict)
bp(item["dire"]["bans"], b_dict)
# pick的数据
bp(item["radiant"]["picks"], p_dict)
bp(item["dire"]["picks"], p_dict)

也可以统计所有英雄的出场次数,非搬即选bp_list。
还可以获取冠军队伍的bp情况,team_id 即队伍的id。

if item["radiant_win"] == 0:
    if item["dire"]["team_id"] == "2586976":
        bp(item["dire"]["bans"], b_win_dict)
        bp(item["dire"]["picks"], p_win_dict)
else:
    if item["radiant"]["team_id"] == "2586976":
        bp(item["radiant"]["bans"], b_win_dict)
        bp(item["radiant"]["picks"], p_win_dict)

生成excel

以上数据我们得到的是字典,里面有各英雄的bp次数,现在要对这些数据进行排序,按次数从大到小排序,这里就用到sorted()方法

# x[0]是根据键排序,x[1]是根据值,这里的值是字典,取["count"]项排序,得到的是元祖的list
new_b_dict = sorted(b_dict.items(), key=lambda x: x[1]["count"], reverse=True)

得到的是数组,生成表格在之前这篇文章中有过使用,这里使用的是xlsxwriter三方库来操作excel 表格的。

# 创建excel表格
file = xlsxwriter.Workbook("dota.xlsx")
# 创建工作表1
sheet1 = file.add_worksheet("sheet1")
# 创建表头
headers = ["图片", "英雄", "ban", "", "图片", "英雄", "pick", "", "图片", "英雄", "bp_all"]
for i, header in enumerate(headers):
    # 第一行为表头
    sheet1.write(0, i, header)

第一行是表头,对应的每一列填充数据

def insert_data(sheet1, headers, bp_list, col1, col2, col3):
    for row in range(len(bp_list)):  # 行
        # 设置行高
        sheet1.set_row(row + 1, 30)
        for col in range(len(headers)):  # 列
            if col == col1:  # 英雄图片,根据id获取
                url = "http://cdn.dotamore.com/heros_id_62_35/%d.png" % bp_list[row][1]["id"]
                image_data = BytesIO(urlopen(url).read())
                sheet1.insert_image(row + 1, col, url, {"image_data": image_data})
            if col == col2:  # 英雄名
                name = bp_list[row][1]["name_cn"]
                sheet1.write(row + 1, col, name)
            if col == col3:  # 统计次数
                count = bp_list[row][1]["count"]
                sheet1.write(row + 1, col, count)

excel 表格生成,还可以插入柱状图。

def insert_chart(file, sheet1, bp_list, name, M, col_x, col_y):
    chart = file.add_chart({"type": "column"})  # 柱状图
    chart.add_series({
        "categories": ["sheet1", 1, col_x, len(bp_list), col_x],  # 图表类别标签范围,x轴,这里取英雄的名字,即英雄名字那一列,行数根据数据列表确定
        "values": ["sheet1", 1, col_y, len(bp_list), col_y],  # 图表数据范围,y轴,即次数那一列,行数根据数据列表确定
        "data_labels": {"value": True},
    })
    chart.set_title({"name": name})  # 图表标题
    chart.set_size({"width": 2000, "height": 400})
    chart.set_x_axis({'name': '英雄'})  # x轴描述
    chart.set_y_axis({'name': '次数'})  # y轴描述
    chart.set_style(3)  # 直方图类型
    sheet1.insert_chart(M, chart)  # 在表格M处插入柱状图

效果图:

image

这里只是简单的对数据进行筛选展示,这些数据还是可以用来做更多的数据分析的,数据来源:刀魔数据。
github地址:https://github.com/taixiang/py_dota

最后放上lgd的图片,希望他们明年能在ti9上再干回来

image
image

欢迎关注我的博客:https://blog.manjiexiang.cn/
更多精彩欢迎关注微信号:春风十里不如认识你

image

有个「佛系码农圈」,欢迎大家加入畅聊,开心就好!

image

过期了,可加我微信 tx467220125 拉你入群。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容