最近邻算法(KNN)

转自:https://www.cnblogs.com/pupilheart/p/9999831.html

1.什么是最近邻是什么?

  kNN算法全程是k-最近邻算法(k-Nearest Neighbor)

  kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数数以一个类型别,则该样本也属于这个类别,并具有该类别上样本的特征。该方法在确定分类决策上,只依据最近邻的一个或者几个样本的类别来决定待分样本所属的类别。

下面举例说明:

即使不知道未知电影属于哪个类型,我们也可以通过某种方式计算,如下图

现在,我们得到了样本集中与未知电影的距离,按照距离的递增顺序,可以找到k个距离最近的电影,假设k=3,则三个最靠近的电影是he is not realy into Dudes,Beautiful women, California man , kNN 算法按照距离最近的三部电影类型决定未知电影的类型,这三部都是爱情片,所以未知电影的类型也是爱情片。

2:kNN算法的一般流程

step.1---初始化距离为最大值

step.2---计算未知样本和每个训练样本的距离dist

step.3---得到目前K个最邻近样本中的最大距离maxdist

step.4---如果dist小于maxdist, 则将训练样本作为K-最近邻样本

step.5---重复步骤2,3,4,直到未知样本和所有训练样本的距离都算完

step.6---统计K-最近邻样本中每个类标号出现的次数

step.7---出现频率最大的类标号最为未知样本的类标号

3.距离公式

在KNN算法中,通过计算对象间距离作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧式距离或者曼哈顿距离:

 对应代码如下:

# kNN算法全称是k-最近邻算法(K-Nearest Neighbor)

from numpy import *

import operator

# 创建数据函数

def createDataSet():

    """ 创建数据集,array 创建数组

    array数组内依次是打斗次数, 接吻次数

    group小组, labels标签"""

    group = array([[3, 104], [2, 100], [1, 81], [101, 10], [99, 5], [98, 2]])

    labels = ["爱情片", "爱情片", "爱情片", "动作片", "动作片", "动作片"]

    return group, labels

# 归类函数

def classify(inX, dataSet, labels, k):

    """ 获取维度,

    inX 待测目标的数据,

    dataSet 样本数据,

    labels 标签,

    k 设置比较邻近的个数"""

    dataSetSize = dataSet.shape[0]  # 训练数据集数据 行数

    print(dataSetSize)

    print(tile(inX, (dataSetSize, 1)))

    diffMat = tile(inX, (dataSetSize, 1)) - dataSet  # 测试数据,样本之间的数据 矩阵偏差

    print(diffMat)

    sqDiffMat = diffMat**2  # 平方计算,得出每个距离的值

    print(sqDiffMat)

    sqDistance = sqDiffMat.sum(axis=1)  # 输出每行的值

    print(sqDistance)

    distances = sqDistance**0.5  # 开方计算

    print(distances)

    sortedDistances = distances.argsort()  # 排序 按距离从小到大 输出索引

    print(sortedDistances)

    classCount = {}

    for i in range(k):

        voteIlabel = labels[sortedDistances[i]] + 1.0 # 按照排序,获取k个对应的标签

        classCount[voteIlabel] = classCount.get(voteIlabel, 0)  # 在字典中添加距离最近的k个对应标签

    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)

    return sortedClassCount[0][0]

group, labels = createDataSet()

res = classify([18, 90], group, labels, 3)

print(res)

运行结果:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容