基于tensorflow+CNN的MNIST数据集手写数字分类

2018年9月18日笔记

tensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流。
CNN是convolutional neural network的简称,中文叫做卷积神经网络。
MNIST是Mixed National Institue of Standards and Technology database的简称,中文叫做美国国家标准与技术研究所数据库
此文在上一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》的基础上修改模型为卷积神经网络模型,模型准确率从98%提升到99.2%
《基于tensorflow+DNN的MNIST数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/9a4ae5655ca6

0.编程环境

操作系统:Win10
python版本:3.6
tensorflow版本:1.6
集成开发环境:jupyter notebook

1.致谢声明

1.本文是作者学习《周莫烦tensorflow视频教程》的成果,感激前辈;
视频链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/
2.参考云水木石的文章,链接:https://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ

2.配置环境

使用卷积神经网络模型要求有较高的机器配置,如果使用CPU版tensorflow会花费大量时间。
读者在有nvidia显卡的情况下,安装GPU版tensorflow会提高计算速度50倍。
安装教程链接:https://blog.csdn.net/qq_36556893/article/details/79433298
如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a

3.下载并解压数据集

MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w 密码: wa9p
下载压缩文件MNIST_data.rar完成后,选择解压到当前文件夹不要选择解压到MNIST_data。
文件夹结构如下图所示:

image.png

4.完整代码

此章是第5-8章的汇总,能够直接运行,使读者有编程结果的感性认识。
如果下面一段代码运行成功,则说明安装tensorflow环境成功。
想要了解代码的具体实现细节,请阅读后面的章节。
在做第5-8章代码实践时,只建议使用jupyter开发环境。

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]))
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]))
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]))
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]))
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

for i in range(1001):
    train_images, train_labels = mnist.train.next_batch(200)
    session.run(train, feed_dict={X_holder:train_images, y_holder:train_labels})
    if i % 100 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        test_images, test_labels = mnist.test.next_batch(2000)
        train_accuracy = session.run(accuracy, feed_dict={X_holder:train_images, y_holder:train_labels})
        test_accuracy = session.run(accuracy, feed_dict={X_holder:test_images, y_holder:test_labels})
        print('step:%d train accuracy:%.4f test accuracy:%.4f' %(i, train_accuracy, test_accuracy))

上面一段代码的运行结果如下图所示:

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
step:0 train accuracy:0.1750 test accuracy:0.1475
step:100 train accuracy:0.8900 test accuracy:0.9080
step:200 train accuracy:0.9150 test accuracy:0.9375
step:300 train accuracy:0.9600 test accuracy:0.9525
step:400 train accuracy:0.9600 test accuracy:0.9605
step:500 train accuracy:0.9400 test accuracy:0.9670
step:600 train accuracy:0.9700 test accuracy:0.9680
step:700 train accuracy:0.9750 test accuracy:0.9630
step:800 train accuracy:0.9850 test accuracy:0.9745
step:900 train accuracy:1.0000 test accuracy:0.9760
step:1000 train accuracy:0.9750 test accuracy:0.9795

5.数据准备

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

第1行代码导入warnings库,第2行代码表示不打印警告信息;
第3行代码导入tensorflow库,取别名tf;
第4行代码人从tensorflow.examples.tutorials.mnist库中导入input_data文件;
本文作者使用anaconda集成开发环境,input_data文件所在路径:C:\ProgramData\Anaconda3\Lib\site-packages\tensorflow\examples\tutorials\mnist,如下图所示:

image.png

第6行代码调用input_data文件的read_data_sets方法,需要2个参数,第1个参数的数据类型是字符串,是读取数据的文件夹名,第2个关键字参数ont_hot数据类型为布尔bool,设置为True,表示预测目标值是否经过One-Hot编码;
第7行代码定义变量batch_size的值为100;
第8、9行代码中placeholder中文叫做占位符,将每次训练的特征矩阵X和预测目标值y赋值给变量X_holder和y_holder。

6.搭建神经网络

X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)

第1行代码表示将1张图片的784个特征变形为28*28的矩阵;
第3-7这5行代码表示第1个卷积层
第9-13这5行代码表示第2个卷积层
卷积层的处理有3步:卷积——>激活——>池化;
第15-19这5行代码表示第1个全连接层
第1个全连接层的处理有3步:展平——>矩阵计算——>激活
第21-24这4行代码表示第2个全连接层
第2个全连接层的处理有2步:矩阵计算——>激活
第26-28行代码定义损失函数loss、优化器optimizer、训练过程train。

7.变量初始化

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

对于神经网络模型,重要是其中的W、b这两个参数。
开始神经网络模型训练之前,这两个变量需要初始化。
第1行代码调用tf.global_variables_initializer实例化tensorflow中的Operation对象。


image.png

第2行代码调用tf.Session方法实例化会话对象;
第3行代码调用tf.Session对象的run方法做变量初始化。

8.模型训练

for i in range(1001):
    train_images, train_labels = mnist.train.next_batch(200)
    session.run(train, feed_dict={X_holder:train_images, y_holder:train_labels})
    if i % 100 == 0:
        correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        test_images, test_labels = mnist.test.next_batch(2000)
        train_accuracy = session.run(accuracy, feed_dict={X_holder:train_images, y_holder:train_labels})
        test_accuracy = session.run(accuracy, feed_dict={X_holder:test_images, y_holder:test_labels})
        print('step:%d train accuracy:%.4f test accuracy:%.4f' %(i, train_accuracy, test_accuracy))

第1行代码表示模型迭代训练1001次;
第2行代码表示从训练集中随机选出过200个样本;
第3行代码表示模型训练,每运行1次此行代码则模型训练一次;
第4-10行代码表示每隔100次训练,打印模型的预测准确率;
第5-6行代码是计算准确率在tensorflow中的表达;
第7行代码表示从测试集中随机选出2000个样本;
第8行代码表示计算模型在训练集上的预测准确率,赋值给变量tran_accuracy;
第9行代码表示计算模型在测试集上的预测准确率,赋值给变量test_accuracy;
第10行代码打印步数、训练集预测准确率、测试集预测准确率。
为了节省读者的程序运行时间,只设置了1000次迭代。
本文作者迭代训练20000次后,模型准确率在99.2%左右。
上面一段代码的运行结果如下:

step:0 train accuracy:0.0850 test accuracy:0.1200
step:100 train accuracy:0.9200 test accuracy:0.8980
step:200 train accuracy:0.9400 test accuracy:0.9445
step:300 train accuracy:0.9400 test accuracy:0.9595
step:400 train accuracy:0.9450 test accuracy:0.9595
step:500 train accuracy:0.9750 test accuracy:0.9640
step:600 train accuracy:0.9800 test accuracy:0.9675
step:700 train accuracy:0.9800 test accuracy:0.9775
step:800 train accuracy:0.9900 test accuracy:0.9700
step:900 train accuracy:0.9850 test accuracy:0.9825
step:1000 train accuracy:0.9750 test accuracy:0.9765

9.保存模型

读者在运行第8章后,则模型训练已经完成,可以跳到第11章运行代码查看模型测试结果。
通过第9章和第10章的学习,读者了解tensorflow如何保存模型和加载模型即可。
不能理解也并没有关系,因为在实际工作中,Keras使得深度学习开发人员更容易保存模型和加载模型。
顺带提一句,tensorflow正在逐渐加强对Keras的支持,所以学习Keras是正确的选择。
如何用keras解决MNIST数据集手写数字分类问题,请阅读本文作者的另外一篇文章《基于Keras+CNN的MNIST数据集手写数字分类》,链接:https://www.jianshu.com/p/3a8b310227e6
运行第8章后,才可以运行本章代码。

saver = tf.train.Saver()
save_path = saver.save(session, 'save_model/mnist_cnn.ckpt')
print('Save to path:', save_path)

第1行代码实例化模型保存对象;
第2行代码调用模型保存对象的save方法,第1个参数是tensorflow的会话,第2个参数是表示路径的字符串;
第3行代码打印保存路径。

10.加载模型

模型下载链接: https://pan.baidu.com/s/11_CV9LG5vzLvA3X-3l83bQ 提取码: 8ayr
压缩文件下载后放到代码文件同级路径,选择解压到save_model,如下图所示:

image.png

save_model文件夹与代码文件在同级目录下,即可成功运行下面的代码。
请读者对照下图,确保自己的代码文件数据、模型放置在正确的路径下。
image.png

import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

tf.reset_default_graph()
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
batch_size = 100
X_holder = tf.placeholder(tf.float32)
y_holder = tf.placeholder(tf.float32)

X_images = tf.reshape(X_holder, [-1, 28, 28, 1])
#convolutional layer 1
conv1_Weights = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='conv1_Weights')
conv1_biases = tf.Variable(tf.constant(0.1, shape=[32]), name='conv1_biases')
conv1_conv2d = tf.nn.conv2d(X_images, conv1_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv1_biases
conv1_activated = tf.nn.relu(conv1_conv2d)
conv1_pooled = tf.nn.max_pool(conv1_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#convolutional layer 2
conv2_Weights = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='conv2_Weights')
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]), name='conv2_biases')
conv2_conv2d = tf.nn.conv2d(conv1_pooled, conv2_Weights, strides=[1, 1, 1, 1], padding='SAME') + conv2_biases
conv2_activated = tf.nn.relu(conv2_conv2d)
conv2_pooled = tf.nn.max_pool(conv2_activated, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#full connected layer 1
connect1_flat = tf.reshape(conv2_pooled, [-1, 7 * 7 * 64])
connect1_Weights = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='connect1_Weights')
connect1_biases = tf.Variable(tf.constant(0.1, shape=[1024]), name='connect1_biases')
connect1_Wx_plus_b = tf.add(tf.matmul(connect1_flat, connect1_Weights), connect1_biases)
connect1_activated = tf.nn.relu(connect1_Wx_plus_b)
#full connected layer 2
connect2_Weights = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='connect2_Weights')
connect2_biases = tf.Variable(tf.constant(0.1, shape=[10]), name='connect2_biases')
connect2_Wx_plus_b = tf.add(tf.matmul(connect1_activated, connect2_Weights), connect2_biases)
predict_y = tf.nn.softmax(connect2_Wx_plus_b)
#loss and train
loss = tf.reduce_mean(-tf.reduce_sum(y_holder * tf.log(predict_y), 1))
optimizer = tf.train.AdamOptimizer(0.0001)
train = optimizer.minimize(loss)

session = tf.Session()
saver = tf.train.Saver()
saver.restore(session, 'save_model/mnist_cnn.ckpt')
correct_prediction = tf.equal(tf.argmax(predict_y, 1), tf.argmax(y_holder, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('load model successful')
train_images, train_labels = mnist.train.next_batch(5000)
test_images, test_labels = mnist.test.next_batch(5000)
train_accuracy = session.run(accuracy, feed_dict={X_holder:train_images, y_holder:train_labels})
test_accuracy = session.run(accuracy, feed_dict={X_holder:test_images, y_holder:test_labels})
print('train accuracy:%.4f test accuracy:%.4f' %(train_accuracy, test_accuracy))

上面一段代码的运行结果如下:

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
INFO:tensorflow:Restoring parameters from save_model/mnist_cnn.ckpt
load model successful
train accuracy:1.0000 test accuracy:0.9903

11.模型测试

本章代码在jupyter开发环境中才会有显示结果。

import math
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

def drawDigit2(position, image, title, isTrue):
    plt.subplot(*position)
    plt.imshow(image.reshape(-1, 28), cmap='gray_r')
    plt.axis('off')
    if not isTrue:
        plt.title(title, color='red')
    else:
        plt.title(title)
        
def batchDraw2(batch_size):
    images,labels = mnist.test.next_batch(batch_size)
    predict_labels = session.run(predict_y, feed_dict={X_holder:images, y_holder:labels})
    image_number = images.shape[0]
    row_number = math.ceil(image_number ** 0.5)
    column_number = row_number
    plt.figure(figsize=(row_number+8, column_number+8))
    for i in range(row_number):
        for j in range(column_number):
            index = i * column_number + j
            if index < image_number:
                position = (row_number, column_number, index+1)
                image = images[index]
                actual = np.argmax(labels[index])
                predict = np.argmax(predict_labels[index])
                isTrue = actual==predict
                title = 'actual:%d\npredict:%d' %(actual,predict)
                drawDigit2(position, image, title, isTrue)

batchDraw2(100)
plt.show()

上面一段代码的运行结果如下图所示:


image.png

从上面的运行结果可以看出,100个数字中只错了1个,符合前1章准确率为99%左右的计算结果。

12.总结

1.这是本文作者写的第6篇关于tensorflow的文章,加深了对tensorflow框架的理解;
2.通过代码实践,本文作者掌握了卷积神经网络的构建,权重初始化,优化器选择等技巧;
3.tensorflow加载模型比sklearn加载模型稍有难度,保存模型时必须对变量命名,否则无法成功加载模型。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容