Python可以干什么?用Python写个会做诗的机器人怎么样?

Python可以干什么?用Python写个会做诗的机器人怎么样?今天小编就带领大家,利用自然语言处理技术和聊天机器人结合,做一个自动做诗的聊天机器人,你激动么?快来看看吧:

The dog , which already ate a bunch of food, was full

The dogs , which already ate a bunch of food, were full

1.原理介绍

首先,让机器自动做诗,就需要运用自然语言处理的手段,让机器能够学会理解“诗句”,进而做出我们需要的诗句。如何让机器“理解”诗句呢?我们用到了深度学习中的长短期记忆网络(LSTM)。有点晕,不要急,我们后面会用白话给大家解释。

LSTM是循环神经网络(RNN)的一种变形,RNN能够很好的解决自然语言处理的任务,但是对于长依赖的句子表现却不是很好,例如:

上面的例子中后面使用“was”还是“were”取决于前面的单复数形式,但是由于“was”距离“dog”距离过长,所以RNN并不能够很好的解决这个问题。

为了解决上述的问题,便引入了LSTM,为了更加直观的解释,我这里引入一个不是很恰当的例子:

比如我们正在看一场电影,我们能够通过镜头的切换来了解故事的进展。而且随着故事的发展,我们会知道某些主角的性格,年龄,喜好等等,这些都不会随着镜头的切换而立马被忘掉,这些就是长期记忆,而当故事发生在某个特定的场景下。

通过我们对于这部动漫的长期记忆,我们知道这是喜洋洋在思考,而在这个镜头中,我们利用到了长期记忆中关于“喜洋洋思考动作”的记忆,而在该镜头下需要被用到的长期记忆就被称为“工作记忆”。

2.白话解释LSTM

那么LSTM是如何工作的呢?

1).首先得让LSTM学会遗忘

比如,当一个镜头结束后,LSTM应该忘记该镜头的位置,时间,或者说忘记该镜头的所有信息。但是如果发生某一演员领了盒饭的事情,那么LSTM就应该记住这个人已经领盒饭了,这也跟我们观看影片一样,我们会选择忘记一些记忆,而保留我们需要的记忆。所以LSTM应该有能力知道当有新的镜头输入时,什么该记住,什么该忘记。

2).其次是添加保留机制

当LSTM输入新的镜头信息时,LSTM应该去学习什么样的信息值得使用和保存。然后是根据前面的两条,当有新的镜头输入时,LSTM会遗忘那些不需要的长期记忆,然后学习输入镜头中哪些值得使用,并将这些保存到长期记忆当中。

3).最后是需要知道长期记忆的哪些点要被立即使用

比如,我们看到影片当中有个人在写东西,那么我们可能会调用年龄这个长期记忆(小学生可能在写作业,而大人可能再写文案),但是年龄信息跟当前的场景可能不相关。

4).因此LSTM只是学习它需要关注的部分,而不是一次使用所有的记忆。因此LSTM能够很好的解决上述的问题。

3.实战机器人

下面便是实战的环节,虽然LSTM效果非常出色,但是仍旧需要对于数据的预处理工作,LSTM需要将每个诗句处理成相同的长度,而且需要将汉字转换成为数字形式。那么如何进行预处理呢,主要分为3步 :

读入数据,我们收集了众多的诗词数据

统计每一个字出现的次数,同时以其出现的次数作为每个汉字的id。

在产生批量数据的时候,我们需要将每一个诗句的长度都统一到同样的长度,因此,对于长度不够的句子,我们会以“*”进行填充

所以在最后的效果展示的时候,可能在诗句中出现“*”的字样。数据预处理的部分代码如下图所示:

上述的代码中主要完成了下面几步:

1).首先是读入数据,并将句长大于100的进行缩减,删掉100个字符后面的部分。

2).然后在每个句子的开头和结尾加入‘^’和‘$’作为句子的标志。对于句长小于MIN_LENGTH的直接删除

3).最后将处理好的诗句,进行字数的统计,统计每个字出现的次数,并按照出现的次数作为每个汉字的id。

对于数据预处理部分的代码,我都进行了注释,方便大家进行理解,对于我们对于数据处理,以及python语句的理解都有极大的帮助。

模型的训练,需要确保电脑中已经配置了tensorflow和numpy库。当模型训练完成后,我们可以直接对于模型进行调用,嵌入到我们的聊天机器人程序中,来实现我们的聊天机器人(对于聊天机器人的介绍,可以参照文末历史文章)。

下面是部分代码的展示:

4. 效果展示

说了这么多,我们来看一些训练完的机器人作诗的效果

在图A中展示了做诗机器人效果,机器人输出“请输入藏头诗提示:”,当我们输入藏头诗提示时,机器人便会做出符合我们要求的藏头诗。

在图B中展示了有“*”字符存在的情况,当然由于中华文化的博大精深,也受制于训练资料的限制,当我们的藏头诗提示中存在没有在训练资料里出现的字符时,机器人便会提示该字符不在字典中,

在如图C中红色标识出来的部分,会处理异常的情况,提示不在字典中!

以上就是基于自然语言处理和聊天机器人的做诗机器人,如果说Python是一把屠龙宝刀可以做很多事情,那么进入机器学习的大门之后Python就插上翅膀会飞的宝刀,可以上天入地做很多好玩的事情,而且极大的提高效率。

python交流学习扣扣群:250933691,多多交流问题,互帮互助,群里有不错的学习教程和开发工具。学习python有任何问题(学习方法,学习效率,如何就业),可以随时来咨询我

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,204评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,091评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,548评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,657评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,689评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,554评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,302评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,216评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,661评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,851评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,977评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,697评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,306评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,898评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,019评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,138评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,927评论 2 355

推荐阅读更多精彩内容