TensorFlow架构与设计:图模块

计算图是TensorFlow领域模型的核心。本文通过对计算图领域模型的梳理,讲述计算图构造的基本原理。

Edge持有前驱节点与后驱节点,从而实现了计算图的连接,也是计算图前向遍历,后向遍历的衔接点。

边上的数据以Tensor的形式传递,Tensor的标识由源节点的名称,及其所在边的src_output唯一确定。也就是说,tensor_id = op_name:src_output

src_output与dst_input

Edge持有两个重要的属性:

  • src_output:表示该边为前驱节点的第src_output条输出边;
  • dst_input:表示该边为后驱节点的第dst_input条输入边。

例如,存在两个前驱节点s1, s2,都存在两条输出边;存在两个后驱节点d1, d2,都存在两条输入边。

边索引

控制依赖

计算图中存在两类边,

  • 普通边:用于承载Tensor,常用实线表示;
  • 控制依赖:控制节点的执行顺序,常用虚线表示。

特殊地,控制依赖边,其src_output, dst_input都为-1(Graph::kControlSlot),暗喻控制依赖边不承载任何数据,仅仅表示计算的依赖关系。

bool Edge::IsControlEdge() const {
   return src_output_ == Graph::kControlSlot;
}

节点

Node(节点)持有零条或多条输入/输出的边,分别使用in_edges, out_edges表示。另外,Node持有NodeDef, OpDef。其中,NodeDef持有设备分配信息,及其OP的属性值集合;OpDef持有OP的元数据。

节点

输入边

在输入边的集合中按照索引线性查找,当节点输入的边比较多时,可能会成为性能的瓶颈。依次类推,按照索引查找输出边,算法相同。

Status Node::input_edge(int idx, const Edge** e) const {
  for (auto edge : in_edges()) {
    if (edge->dst_input() == idx) {
      *e = edge;
      return Status::OK();
    }
  }
  return errors::NotFound("not found input edge ", idx);
}

前驱节点

首先通过idx索引找到输入边,然后通过输入边找到前驱节点。依次类推,按照索引查找后驱节点,算法相同。

Status Node::input_node(int idx, const Node** n) const {
  const Edge* e;
  TF_RETURN_IF_ERROR(input_edge(idx, &e));
  if (e == nullptr) {
    *n = nullptr;
  } else {
    *n = e->src();
  }
  return Status::OK();
}

Graph(计算图)就是节点与边的集合,领域模型何其简单。计算图是一个DAG图,计算图的执行过程将按照DAG的拓扑排序,依次启动OP的运算。其中,如果存在多个入度为0的节点,TensorFlow运行时可以实现并发,同时执行多个OP的运算,提高执行效率。

空图

计算图的初始状态,并非是一个空图。实现添加了两个特殊的节点:Source与Sink节点,分别表示DAG图的起始节点与终止节点。其中,Source的id为0,Sink的id为1;依次论断,普通OP节点的id将大于1。

另外,Source与Sink之间,通过连接「控制依赖」的边,保证计算图的执行始于Source节点,终于Sink节点。它们之前连接的控制依赖边,其src_output, dst_input值都为-1。

习惯上,仅包含Source与Sink节点的计算图也常常称为空图。

空图
Node* Graph::AddEndpoint(const char* name, int id) {
  NodeDef def;
  def.set_name(name);
  def.set_op("NoOp");

  Status status;
  Node* node = AddNode(def, &status);
  TF_CHECK_OK(status);
  CHECK_EQ(node->id(), node_id);
  return node;
}

Graph::Graph(const OpRegistryInterface* ops)
    : ops_(ops), arena_(8 << 10 /* 8kB */) {
  auto src  = AddEndpoint("_SOURCE", kSourceId);
  auto sink = AddEndpoint("_SINK",   kSinkId);
  AddControlEdge(src, sink);
}

非空图

在前端,用户使用OP构造器,将构造任意复杂度的计算图。对于运行时,无非就是将用户构造的计算图通过控制依赖的边与Source/Sink节点连接,保证计算图执行始于Source节点,终于Sink节点。

非空图

添加边

计算图的构造过程非常简单,首先通过Graph::AddNode在图中放置节点,然后再通过Graph::AddEdge在图中放置边,实现节点之间的连接。

const Edge* Graph::AllocEdge() const {
  Edge* e = nullptr;
  if (free_edges_.empty()) {
    e = new (arena_.Alloc(sizeof(Edge))) Edge;
  } else {
    e = free_edges_.back();
    free_edges_.pop_back();
  }
  e->id_ = edges_.size();
  return e;
}

const Edge* Graph::AddEdge(Node* source, int x, Node* dest, int y) {
  auto e = AllocEdge();
  e->src_ = source;
  e->dst_ = dest;
  e->src_output_ = x;
  e->dst_input_ = y;

  CHECK(source->out_edges_.insert(e).second);
  CHECK(dest->in_edges_.insert(e).second);

  edges_.push_back(e);
  edge_set_.insert(e);
  return e;
}

添加控制依赖边,则可以转发调用Graph::AddEdge实现。

const Edge* Graph::AddControlEdge(Node* src, Node* dst) {
  return AddEdge(src, kControlSlot, dst, kControlSlot);
}

开源技术书

https://github.com/horance-liu/tensorflow-internals
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,233评论 6 495
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,357评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,831评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,313评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,417评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,470评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,482评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,265评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,708评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,997评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,176评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,503评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,150评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,391评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,034评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,063评论 2 352

推荐阅读更多精彩内容