《动手学》:卷积神经网络基础_课后作业

卷积神经网络基础

本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。

具体内容(附代码)链接:https://www.kesci.com/org/boyuai/project/share/5b7cfb4503c69f29

代码讲解视频链接:伯禹学习平台


选择题

1.

假如你用全连接层处理一张256 \times 256的彩色(RGB)图像,输出包含1000个神经元,在使用偏置的情况下,参数数量是:

A.65536001

B.65537000

C.196608001

D.196609000

答案:D

图像展平后长度为3 \times 256 \times 256,权重参数和偏置参数的数量是3 \times 256 \times 256 \times 1000 +1000 = 1966090003×256×256×1000+1000=196609000。

2.

假如你用全连接层处理一张256 \times 256的彩色(RGB)图像,卷积核的高宽是3 \times 3,输出包含10个通道,在使用偏置的情况下,这个卷积层共有多少个参数:

A.90

B.100

C.280

D.300

答案:C

输入通道数是3,输出通道数是10,所以参数数量是10 \times 3 \times 3 \times 3 + 10 = 280

3.

conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),输入一张形状为3 \times 100 \times 100的图像,输出的形状为:

A.3×102×102

B.3×100×100

C.4×102×102

D.4×100×100

答案:C

输出通道数是4,上下两侧总共填充4行,卷积核高度是3,所以输出的高度是104−3+1=102,宽度同理可得。

4.

关于卷积层,以下哪种说法是错误的:

A.1×1卷积可以看作是通道维上的全连接

B.某个二维卷积层用于处理形状为3 \times 100 \times 100的输入,则该卷积层无法处理形状为3 \times 256 \times 256的输入

C.卷积层通过填充、步幅、输入通道数、输出通道数等调节输出的形状

D.两个连续的3×3卷积核的感受野与一个5×5卷积核的感受野相同

答案:B

对于高宽维度,只要输入的高宽(填充后的)大于或等于卷积核的高宽即可进行计算

5.

关于池化层,以下哪种说法是错误的:

A.池化层不参与反向传播

B.池化层没有模型参数

C.池化层通常会减小特征图的高和宽

D.池化层的输入和输出具有相同的通道数

答案:A

选项A:池化层有参与模型的正向计算,同样也会参与反向传播

选项B:池化层直接对窗口内的元素求最大值或平均值,并没有模型参数参与计算

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容