为什么交叉熵(cross-entropy)可以用于计算代价

https://www.zhihu.com/question/65288314
知乎上第一条和第二条回答的不错

在利用深度学习模型解决有监督问题时,比如分类、回归、去噪等,我们一般的思路如下:

  1. 信息流forward propagation,直到输出端;

  2. 定义损失函数L(x, y | theta);

  3. 误差信号back propagation。采用数学理论中的“链式法则”,求L(x, y | theta)关于参数theta的梯度;

  4. 利用最优化方法(比如随机梯度下降法),进行参数更新;

  5. 重复步骤3、4,直到收敛为止;

    在第2步中,我们通常会见到多种损失函数的定义方法,常见的有均方误差(error of mean square)、最大似然误差(maximum likelihood estimate)、最大后验概率(maximum posterior probability)、交叉熵损失函数(cross entropy loss),下面我们就来理清他们的区别和联系。一般地,一个机器学习模型选择哪种损失函数,是凭借经验而定的,没有什么特定的标准。具体来说,
    
    (1)均方误差是一种较早的损失函数定义方法,它衡量的是两个分布对应维度的差异性之和。说点题外话,与之非常接近的一种相似性度量标准“余弦角”,则衡量的是两个分布整体的相似性,也即把两个向量分别作为一个整体,计算出的夹角作为其相似性大小的判断依据,读者可以认真体会这两种相似性判断标准的差异;
    
     (2)最大似然误差是从概率的角度,求解出能完美拟合训练样例的模型参数theta,使得概率p(y | x, theta)最大化;
    
     (3)最大化后验概率,即使得概率p(theta | x, y)最大化,实际上也等价于带正则化项的最大似然概率(详细的数学推导可以参见Bishop 的Pattern Recognition And Machine Learning),它考虑了先验信息,通过对参数值的大小进行约束来防止“过拟合”;
    
     (4)交叉熵损失函数,衡量的是两个分布p、q的相似性。在给定集合上两个分布p和q的cross entropy定义如下:
    
              其中,H(p)是p的熵,Dkl(p||q)表示KL-divergence。对于离散化的分布p和q,
              在机器学习应用中,p一般表示样例的标签的真实分布,为确定值,故最小化交叉熵和最小化KL-devergence是等价的,只不过之间相差了一个常数。

值得一提的是,在分类问题中,交叉熵的本质就是似然函数的最大化。证明如下,

  • 记带标签的样例为(x, y), 其中x表示输入特征向量,y=[y1, y2, ..., yc]表示真实标签的one-hot表示,y_=[y_1, y_2, ..., y_c]表示模型输出的分布,c表示样例输出的类别数,那么,

       (1)对于二分类问题,p(x)=[1, 0],q(x)=[y_1, y_2],y_1=p(y=1|x)表示模型输出为真的概率,交叉熵H(p, q)=-(1*y_1+0*y_2)=-y_1,显然此时交叉熵的最小化等价于似然函数的最大化;
    
       (2)对于多分类问题, 假设p(x)=[0, 0, 0, ..., 1, 0, 0],q(x)=[y_1, y_2, y_3, ..., y_k, y_(k+1), y_(k+2)],即表示真实样例标签为第k类,y_k=p(y=k|x)表示模型输出为第k类的概率,交叉熵H(p, q)=-( 0*y_1+0*y_2+0*y_3+...+1*y_k+0*y_(k+1)+0*y_(k+2) ) = -y_k, 此时同上。
    
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,640评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,254评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,011评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,755评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,774评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,610评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,352评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,257评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,717评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,894评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,021评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,735评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,354评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,936评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,054评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,224评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,974评论 2 355

推荐阅读更多精彩内容

  • afinalAfinal是一个android的ioc,orm框架 https://github.com/yangf...
    passiontim阅读 15,434评论 2 45
  • 每天从单位下班都已是华灯初上时分了,从健康学的角度来说,已经不适宜再吃任何食物了,但是,苦逼工作的我,却连晚餐都还...
    碎碎妖阅读 429评论 4 7
  • 我们总以为自己是世界上最有家庭观念、最讲究亲情的种族之一,并且深深地为之自豪,但在老外的眼中,却未必如此。 我澳洲...
    TWE阅读 616评论 0 0
  • leetcode 265 Paint House II problem: There are a row of n...
    crazydane阅读 369评论 0 1
  • 早起打了顺风车空腹去抽血,后期走路脚步越来越沉重,生好回黄山还是决定要买辆车,有了宝宝出行会方便很多。等验血报告的...
    喵喵司令阅读 162评论 0 0